精英家教网 > 高中数学 > 题目详情
1.已知数列已知数列{an}的前n项和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{{1}_{\;}}{{b}_{n}{b}_{n+1}}$,求Tn的取值范围.

分析 (1)由Sn+$\frac{1}{3}$an=1(n∈N+).当n=1时,a1=S1,可得${a}_{1}+\frac{1}{3}{a}_{1}$=1,解得a1,当n≥2时,${S}_{n-1}+\frac{1}{3}{a}_{n-1}$=1,可得:${a}_{n}=\frac{1}{4}{a}_{n-1}$.利用等比数列的通项公式即可得出.
(2)由(1)知1-Sn+1=$\frac{1}{3}{a}_{n+1}$=$(\frac{1}{4})^{n+1}$,bn=-(n+1)(n∈N+),$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$.利用“裂项求和”方法与数列的单调性即可得出.

解答 解:(1)由Sn+$\frac{1}{3}$an=1(n∈N+).
当n=1时,a1=S1,可得${a}_{1}+\frac{1}{3}{a}_{1}$=1,解得a1=$\frac{3}{4}$,…(1分)
当n≥2时,${S}_{n-1}+\frac{1}{3}{a}_{n-1}$=1,可得an+$\frac{1}{3}{a}_{n}$-$\frac{1}{3}{a}_{n-1}$=0,化为:${a}_{n}=\frac{1}{4}{a}_{n-1}$.
∴数列{an}是以$\frac{3}{4}$为首项,$\frac{1}{4}$为公比的等比数列.                       …(4分)
故${a}_{n}=\frac{3}{4}×(\frac{1}{4})^{n-1}$=3×$(\frac{1}{4})^{n}$(n∈N*).…(6分)
(2)由(1)知1-Sn+1=$\frac{1}{3}{a}_{n+1}$=$(\frac{1}{4})^{n+1}$,
∴bn=log4(1-Sn+1)=-(n+1)(n∈N+),
$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$.
∴Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{{1}_{\;}}{{b}_{n}{b}_{n+1}}$=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$,
∴Tn的取值范围是$[\frac{1}{6},\frac{1}{2})$.

点评 本题考查了“裂项求和”方法、数列的单调性、数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知M={x|-2≤x≤2},N={x|x<1},则(∁RM)∩N={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织得快,而且每天增加的数量相同,已知第一天织布10尺,一个月(按30天计算)总共织布6尺,问每天增加的数量为多少尺?该问题的答案为(  )
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow x$、$\overrightarrow y$满足:$|{\overrightarrow x}$|=1,$|{\overrightarrow y}$|=2,且${(\overrightarrow x-2\overrightarrow y)_{\;}}{•_{\;}}$$(2\overrightarrow x-\overrightarrow y)=5$.
(1)求$\overrightarrow x$与$\overrightarrow y$的夹角θ;
(2)若$(\overrightarrow x-m\overrightarrow y)⊥\overrightarrow y$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合P={x|1<3x≤9},Q={x∈Z|y=ln(-2x2+7x)},则P∩Q=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是平行四边形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)证明:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求平面ADE与平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据平面向量基本定理,若$\overrightarrow{e_1},\overrightarrow{e_2}$为一组基底,同一平面的向量$\overrightarrow a$可以被唯一确定地表示为$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,则向量$\overrightarrow a$与有序实数对(x,y)一一对应,称(x,y)为向量$\overrightarrow a$在基底$\overrightarrow{e_1},\overrightarrow{e_2}$下的坐标;特别地,若$\overrightarrow{e_1},\overrightarrow{e_2}$分别为x,y轴正方向的单位向量$\overrightarrow i,\overrightarrow j$,则称(x,y)为向量$\overrightarrow a$的直角坐标.
(I)据此证明向量加法的直角坐标公式:若$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$,则$\overrightarrow a+\overrightarrow b=({x_1}+{x_2},{y_1}+{y_2})$;
(II)如图,直角△OAB中,$∠AOB={90°},|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$,C点在AB上,且$\overrightarrow{OC}⊥\overrightarrow{AB}$,求向量$\overrightarrow{OC}$在基底$\overrightarrow{OA},\overrightarrow{OB}$下的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F是双曲线$C:{x^2}-\frac{y^2}{8}=1$的右焦点,P是C左支上一点,$A({0,6\sqrt{6}})$,则△APF周长最小值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)求这n名同学成绩的平均数、中位数及众数;
(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名同学参加志愿者活动,求这3名同学中恰有两名同学得分在[90,100]内的概率.

查看答案和解析>>

同步练习册答案