精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|log2x≤1},B={x|$\frac{1}{x}$>1},则A∩(∁RB)=(  )
A.(-∞,2]B.(0,1]C.[1,2]D.(2,+∞)

分析 求函数定义域求出集合A,解不等式求出集合B,
根据补集与交集的定义写出A∩(∁RB).

解答 解:集合A={x|log2x≤1}={x|0<x≤2},
B={x|$\frac{1}{x}$>1}={x|$\frac{1}{x}$-1>0}={x|0<x<1},
∴∁RB={x|x≤0或x≥1},
∴A∩(∁RB)={x|1≤x≤2}=[1,2].
故选:C.

点评 本题考查了求函数定义域和解不等式的应用问题,也考查了补集与交集的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,请你补充一个条件①(或③),使平面MBD⊥平面PCD.①DM⊥PC ②DM⊥BM③BM⊥PC ④PM=MC(填写你认为是正确的条件对应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简y=$\frac{2sin2α}{1+cos2α}$(  )
A.tanαB.tan2αC.2tanαD.2tan2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=sinxcosx-cos2(x+$\frac{π}{4}$).
(1)求f(x)的单增区间和$f(\frac{π}{8})$的值;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f($\frac{A}{2}$)=0,a=1,求△ABC面积的最大值.(参考公式:m2+n2≥2mn)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x2+4≤5x,x∈R},B={y|y>2},则A∩B=(  )
A.(2,+∞)B.(4,+∞)C.(2,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)定义域为[-1,5],部分对应值如表,f(x)的导函数f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题:
①函数f(x)的极大值点有2个;
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中是真命题的是①②.(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关于回归分析与独立性检验的说法正确的是(  )
A.回归分析和独立性检验没有什么区别
B.回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定关系
C.回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验
D.独立性检验可以100%确定两个变量之间是否具有某种关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,AD是BC边上的中线,且cos∠BAC=$\frac{4}{5}$,cosC=$\frac{5}{13}$,BC=26.
(1)求AB的长;      
(2)求cosB;      
(3)求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线ax+2y+1=0和直线3x+(a-1)y+1=0平行,则a=(  )
A.-2B.2或-3C.3D.-2或3

查看答案和解析>>

同步练习册答案