精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)定义域为[-1,5],部分对应值如表,f(x)的导函数f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题:
①函数f(x)的极大值点有2个;
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中是真命题的是①②.(填写序号)

分析 先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象和导函数的图象,对四个命题,一一进行验证,对于假命题采用举反例的方法进行排除即可得到答案.

解答 解:由导函数的图象和原函数的关系得,原函数的大致图象如图:
由图得:∵f(x)的极大值点有2个,故①为真命题;
②为真命题.因为在[0,2]上导函数为负,故原函数递减;
由已知中y=f′(x)的图象,及表中数据可得当x=0或x=4时,函数取最大值2,
若x∈[-1,t]时,f(x)的最大值是2,那么0≤t≤5,故t的最大值为5,即③错误;
④由于f(3)未知,故当1<a<2时,函数y=f(x)-a有4个零点,不正确.
故答案为①②.

点评 本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在y=sin|x|,y=|sinx|,y=sin(2x+$\frac{2π}{3}$),y=cos($\frac{x}{2}$+$\frac{2π}{3}$),y=cosx+|cosx|$y=tan\frac{1}{2}x+1$中,最小正周期为π的函数的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某三棱锥的三视图如图所示,则该三棱锥外接球的表面积为(  )
A.B.25πC.50πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知α是三角形的内角,且sinαcosα=$\frac{1}{8}$,则cosα+sinα的值等于$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|log2x≤1},B={x|$\frac{1}{x}$>1},则A∩(∁RB)=(  )
A.(-∞,2]B.(0,1]C.[1,2]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是(  )
A.$\sqrt{7}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.关于下面等高条形图说法正确的有(  )
A.在被调查的 x 1中,y 1占70%B.在被调查的 x 2中,y 2占20%
C.1与 y 1有关D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把离心率e=$\frac{{\sqrt{5}+1}}{2}$的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$称为黄金双曲线.给出以下几个说法:
①双曲线x2-$\frac{{2{y^2}}}{{\sqrt{5}-1}}$=1是黄金双曲线; 
②若双曲线上一点P(x,y)到两条渐近线的距离积等于$\frac{a^3}{c}$,则该双曲线是黄金双曲线;   
③若F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,-b)且∠F1B1A2=900,则该双曲线是黄金双曲线;  
④.若直线l经过右焦点F2交双曲线于M,N两点,且MN⊥F1F2,∠MON=90°,则该双曲线是黄金双曲线;
其中正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在△ABC中,I为△ABC的内心,AI交BC于D,交△ABC外接圆于E
求证:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

同步练习册答案