精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=ax﹣(a+2lnx2,其中aR

1)当a4时,求函数fx)的极值;

2)试讨论函数fx)在(1e)上的零点个数.

【答案】1)极大值6ln2,极小值4;(2)分类讨论,详见解析.

【解析】

1)把a4代入后对函数求导,然后结合导数可求函数的单调性,进而可求极值;

2)先对函数求导,然后结合导数与单调性关系对a进行分类讨论,确定导数符号,然后结合导数与函数的性质可求.

1)当a4时,fx)=4x6lnx2x0

易得fx)在(0),(1+∞)上单调递增,在()上单调递减,

故当x时,函数取得极大值f)=6ln2,当x1时,函数取得极小值f1)=4

2

a0时,fx)在(1e)上单调递减,fx)<f1)=a0,此时函数在(1e)上没有零点;

a2时,fx)在(1e)上单调递增,fx)>f1)=a2,此时函数在(1e)上没有零点;

0时,fx)在(1e)上单调递减,由题意可得,

解可得,0

时,fx)在(1)上单调递减,在()上单调递增,

由于f1)=a0fe)=ae1

ga)=f)=2﹣(a+2lna+2=(a+2lna﹣(1+ln2a+42ln2

ha,则0

所以ha)在()上递减,ha)>h2)=10,即g′(a)>0

所以ga)在()上递增,ga)>g)=2

f)>0

所以fx)在(1e)上没有零点,

综上,当0a时,fx)在(1e)上有唯一零点,

a0a时,fx)在(1e)上没有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接“五一国际劳动节”,某商场规定购买超过6000元商品的顾客可以参与抽奖活动现有甲品牌和乙品牌的扫地机器人作为奖品,从这两种品牌的扫地机器人中各随机抽取6台检测它们充满电后的工作时长相关数据见下表(工作时长单位:分)

机器序号

1

2

3

4

5

6

甲品牌工作时长/

220

180

210

220

200

230

乙品牌工作时长/

200

190

240

230

220

210

1)根据所提供的数据,计算抽取的甲品牌的扫地机器人充满电后工作时长的平均数与方差;

2)从乙品牌被抽取的6台扫地机器人中随机抽出3台扫地机器人,记抽出的扫地机器人充满电后工作时长不低于220分钟的台数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点且斜率为的直线与轴交于点,与椭圆交于另一个点,且点轴上的射影恰好为点

1)求点的坐标;

2)过点且斜率大于的直线与椭圆交于两点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinωx+φ)(ω0)的最小正周期为π,且关于中心对称,则下列结论正确的是(

A.f1)<f0)<f2B.f0)<f2)<f1

C.f2)<f0)<f1D.f2)<f1)<f0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线与抛物线交于两点.

1)若过点,且,求的斜率;

2)若,且的斜率为,当时,求轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足,数列数列,记.

1)写出一个满足,且数列

2)若,证明:数列是递增数列的充要条件是

3)对任意给定的整数,是否存在首项为0数列,使得?如果存在,写出一个满足条件的数列;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国汉代数学家、天文学家,他在注解《周髀算经》时,介绍了勾股圆方图,亦称赵爽弦图,它被2002年国际数学家大会选定为会徽.“赵爽弦图是以弦为边长得到的正方形,该正方形由4个全等的直角三角形加上中间一个小正方形组成类比赵爽弦图,可类似地构造如图所示的图形它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形设DF2AF2,若在大等边三角形中随机取一点,则此点取自三个全等三角形(阴影部分)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱的底面为等腰直角三角形,其中,点是线段的中点.

(Ⅰ)若点满足,且,求的值;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案