精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|x-1|.
(1)求不等式f(x)+x2-1>0的解集;
(2)设g(x)=-|x+3|+m,若关于x的不等式f(x)<g(x)的解集非空,求实数m的取值范围.

分析 (1)原不等式可化为:|x-1|>1-x2,即x-1>1-x2或x-1<x2-1,即可求不等式f(x)+x2-1>0的解集;
(2)原不等式等价于|x-1|+|x+3|<m的解集非空,令h(x)=|x-1|+|x+3|,即h(x)min<m,即可求实数m的取值范围.

解答 解:(1)原不等式可化为:|x-1|>1-x2,即x-1>1-x2或x-1<x2-1,
由x-1>1-x2,得x>1或x<-2;由x-1<x2-1,得x>1或x<0.
综上,原不等式的解集为{x|x>1或x<0}.
(2)原不等式等价于|x-1|+|x+3|<m的解集非空,
令h(x)=|x-1|+|x+3|,即h(x)min<m,
由|x-1|+|x+3|≥|x-1-x-3|=4,所以h(x)min=4,所以m>4.

点评 本题考查不等式的解法,考查函数的最值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(Ⅰ)若{2,-2}⊆S,求使元素个数最少的集合S;
(Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱台ABC-A1B1C1中,AB=BC=4,AC=2A1C1=2$\sqrt{2}$,AA1=CC1=1,平面AA1B1B⊥平面AA1C1C.
(1)求证:BB1⊥平面AA1C1C;
(2)点D为AB上一点,二面角D-CC1-B的大小为30°,求BC与平面DCC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.若命题p:?x0∈R,x02-x0+1<0,则¬p:?x∉R,x2-x+1≥0
B.已知相关变量(x,y)满足回归方程$\stackrel{∧}{y}$=2-4x,若变量x增加一个单位,则y平均增加4个单位
C.命题“若圆C:(x-m+1)2+(y-m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设抛物线C:y2=2px(p>0)的焦点为F,准线为l,M∈C,以M为圆心的圆M与准线l相切于点Q,Q点的纵坐标为$\sqrt{3}p$,E(5,0)是圆M与x轴不同于F的另一个交点,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线$y={(\frac{1}{3})^x}$与$y={x^{\frac{1}{2}}}$的交点横坐标所在区间为(  )
A.$(0,\;\frac{1}{3})$B.$(\frac{1}{3},\;\frac{1}{2})$C.$(\frac{1}{2},\;\frac{2}{3})$D.$(\frac{2}{3},\;1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是(  )
A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线E:y2=8x,圆M:(x-2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)点Q(x0,y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点,求△QAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程$\sqrt{{x^2}+6x+10}+\sqrt{{x^2}-6x+10}=8$的解为$±\frac{{4\sqrt{42}}}{7}$.

查看答案和解析>>

同步练习册答案