分析 (1)延长AA1,BB1,CC1交于点O,证明OB⊥CO,OB⊥AO,即可证明BB1⊥平面AA1C1C
(2)以O为原点,OA,OB,OC为x,y,z轴建立坐标系O-xyz.
,求出平面ODC、OBC的法向量,利用二面角D-CC1-B的大小为30°.确定点D的位置,再利用向量求BC与平面DCC1所成角θ的正弦值
解答
解:(1)延长AA1,BB1,CC1交于点O,
∵AC=2A1C1=2$\sqrt{2}$,AA1=CC1=1,∴OA=OC=2,∴OA⊥OC;
∵平面AA1B1B⊥平面AA1C1C.平面AA1B1B∩平面AA1C1C=OA.OC?平面AA1C1C,
∴OC⊥平面AA1B1B,OB?平面AA1B1B,∴OB⊥OC,
又∵△AOB≌△BOC,∴OB⊥OA,∵OA∩OC=O,
∴BB1⊥平面AA1C1C;
(2)∵AB=BC=4,由(1)知OA,OB,OC相互垂直,∴OB=2OB1=2$\sqrt{3}$,
以O为原点,OA,OB,OC为x,y,z轴建立坐标系O-xyz.
A1(1,0,0),A(2,0,0),B1(0,$\sqrt{3}$,0),B(0,2$\sqrt{3}$,0),C1(0,0,1),C(0,0,2)
设$\overrightarrow{AD}=λ\overrightarrow{AB}$,则$\overrightarrow{OD}=(2-2λ,2\sqrt{3}λ,0)$,
设平面ODC的法向量为$\overrightarrow{m}=(x,y,z)$
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{OC}=z=0}\\{\overrightarrow{m}•\overrightarrow{OD}=(2-2λ)x+2\sqrt{3}λy=0}\end{array}\right.$,可取$\overrightarrow{m}=(\sqrt{3}λ,λ-1,0)$.
$\overrightarrow{O{B}_{1}}=(1,0,0)$是平面OBC的法向量,
∵二面角D-CC1-B的大小为30°,∴|cos<$\overrightarrow{m},\overrightarrow{O{A}_{1}}$>|=$\frac{\sqrt{3}λ}{\sqrt{4{λ}^{2}-2λ+1}}=\frac{\sqrt{3}}{2},解得λ=\frac{1}{2}$.
所以点D为AB的中点,$\overrightarrow{m}=(\frac{\sqrt{3}}{2},-\frac{1}{2},0),\overrightarrow{BC}=(0,-2\sqrt{3},2)$,
∴BC与平面DCC1所成角θ的正弦值sinθ=|cos$<\overrightarrow{m},\overrightarrow{BC}>$|=$\frac{\sqrt{3}}{4}$,
点评 本题考查了线面垂直的判定,向量法处理动点问题、线面角问题、面面角问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -7 | B. | $-\frac{13}{4}$ | C. | -1 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,-$\frac{1}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{3}$] | C. | [-1,1] | D. | [-1,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $2\sqrt{3}$ | C. | 3 | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | -$\frac{5}{4}$ | C. | $\frac{4}{13}$ | D. | $\frac{13}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com