精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{1}{2}$x2-tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为(  )
A.[-1,-$\frac{1}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[-1,1]D.[-1,$\frac{1}{3}$]

分析 求导数f′(x)=x+tsinx,并设g(x)=f′(x),并求出g′(x)=1+tcosx,由f′(x)在R上单调递增即可得出tcosx≥-1恒成立,这样即可求出t的取值范围.

解答 解:f′(x)=x+tsinx,设g(x)=f′(x);
∵f′(x)在R上单调递增;
∴g′(x)=1+tcosx≥0恒成立;
∴tcosx≥-1恒成立;
∵cosx∈[-1,1];
∴$\left\{\begin{array}{l}{-t≥-1}\\{t≥-1}\end{array}\right.$;
∴-1≤t≤1;
∴实数t的取值范围为[-1,1].
故选:C.

点评 考查基本初等函数的求导公式,函数的单调性和函数导数符号的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1-3.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足a1b1+a2b2+…+anbn=3-$\frac{2n+3}{{2}^{n}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(Ⅰ)若{2,-2}⊆S,求使元素个数最少的集合S;
(Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知p:|x-1|<2,q:f(x)=$\frac{{x}^{2}+1}{x}$的最小值为2,则p是q的(  )
A.充分而不必要条件B.充要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函数g(x)=f(x)+2x-a有三个零点,则实数a的取值范围是(  )
A.(0,+∞)B.(-∞,-1)C.(-∞,-3)D.(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,an>0,a1=1,an+2=$\frac{1}{{a}_{n}+1}$,a6=a2,则a2016+a3=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱台ABC-A1B1C1中,AB=BC=4,AC=2A1C1=2$\sqrt{2}$,AA1=CC1=1,平面AA1B1B⊥平面AA1C1C.
(1)求证:BB1⊥平面AA1C1C;
(2)点D为AB上一点,二面角D-CC1-B的大小为30°,求BC与平面DCC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.若命题p:?x0∈R,x02-x0+1<0,则¬p:?x∉R,x2-x+1≥0
B.已知相关变量(x,y)满足回归方程$\stackrel{∧}{y}$=2-4x,若变量x增加一个单位,则y平均增加4个单位
C.命题“若圆C:(x-m+1)2+(y-m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线E:y2=8x,圆M:(x-2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)点Q(x0,y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点,求△QAB面积的最小值.

查看答案和解析>>

同步练习册答案