精英家教网 > 高中数学 > 题目详情
4.已知数列{an}中,an>0,a1=1,an+2=$\frac{1}{{a}_{n}+1}$,a6=a2,则a2016+a3=$\frac{\sqrt{5}}{2}$.

分析 根据数列递推公式求出a3,再由a6=a2,求出a2=a6=$\frac{\sqrt{5}-1}{2}$,而a2016=a503×4+6=a6,问题得以解决.

解答 解:an>0,a1=1,an+2=$\frac{1}{{a}_{n}+1}$,
∴a3=$\frac{1}{{a}_{1}+1}$=$\frac{1}{2}$,
∵a6=a2
∴a6=$\frac{1}{{a}_{4}+1}$,a4=$\frac{1}{{a}_{2}+1}$,
∴a6=$\frac{{a}_{2}+1}{{a}_{2}+2}$=a2
∵an>0,
解得a2=a6=$\frac{\sqrt{5}-1}{2}$
∴a2016=a503×4+6=a6=$\frac{\sqrt{5}-1}{2}$,
∴a2016+a3=$\frac{\sqrt{5}}{2}$,
故答案为:$\frac{\sqrt{5}}{2}$

点评 本题考查了递推关系的应用、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,己知四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,且AB=$\sqrt{2}$,BC=1,点E,F分别为AB,PC中点.
(1)当PA的长度为多少时,EF⊥PD;
(2)在(1)的前提下,求:平面BPC与平面DPC的夹角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆(x-1)2+(y-1)2=2的圆心坐标是(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥DC,FD=FB.
(Ⅰ)若DC=2EF,求证:OE∥平面ADF;
(Ⅱ)求证:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF与平面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{1}{2}$x2-tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为(  )
A.[-1,-$\frac{1}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[-1,1]D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤2}&{\;}\\{2x+y≥2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,则z=ax+y的最小值为1,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}满足an>0,且a2a8=4,则log2a1+log2a2+log2a3+…+log2a9=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的前n项和为Sn,且$\sqrt{{S}_{n}}$是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和,证明:$\frac{2}{3}$<Tn<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A,B,C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A,B,C三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元,2万元,3万元.以这100 位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.
(Ⅰ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润不大于2万元的概率;
(Ⅱ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润的平均值;
(Ⅲ)根据某税收规定,该汽车经销商每月(按30天计)上交税收的标准如表:
月利润(单位:万元)在(0,100]内的部分超过100且不超过150的部分超过150的部分
税率1%2%4%
若该经销商按上述分期付款方式每天平均销售此品牌汽车3辆,估计其月纯收入(纯收入=总利润-上交税款)的平均值.

查看答案和解析>>

同步练习册答案