分析 作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.
解答
解:作出不等式$\left\{\begin{array}{l}{x+y≤2}&{\;}\\{2x+y≥2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,对应的平面区域,
由z=ax+y得y=-ax+z,
若a=0,则y=z,此时z=ax+y的最小值为0,不满足条件.
若a>0,则y=-ax+z的斜率-a<0.此时直线经过点B(1,0)时取得最小值1,
此时a+0=1,解得a=1,满足条件.
若a<0,则y=-ax+z的斜率-a>0.要是目标函数取得最小值1,
则满足$\left\{\begin{array}{l}{-a>0}\\{2a+0=1}\end{array}\right.$,此时不等式无解,不满足条件.
综上:a=1,
故答案为:1.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据条件目标函数z=ax+y的最小值为2,确定直线的位置是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | $y=±\frac{{\sqrt{2}}}{2}x$ | C. | $y=±\sqrt{2}x$ | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com