精英家教网 > 高中数学 > 题目详情
10.设向量$\overrightarrow{a}$=(2,5),$\overrightarrow{b}$=(0,1),则$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)等于(  )
A.31B.32C.33D.34

分析 根据向量$\overrightarrow{a},\overrightarrow{b}$的坐标便可得出$\overrightarrow{a}+\overrightarrow{b}$的坐标,然后进行向量数量积的坐标运算即可得出答案.

解答 解:$\overrightarrow{a}+\overrightarrow{b}=(2,6)$,且$\overrightarrow{a}=(2,5)$;
∴$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})=4+30=34$.
故选D.

点评 考查向量坐标的加法运算,以及向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(sin2α-$\frac{2\sqrt{5}}{3}$,2cosα),$\overrightarrow{b}$=(1,1-sinα),α∈(0,π),且$\overrightarrow{a}$$⊥\overrightarrow{b}$,则tan($α-\frac{π}{4}$)=(  )
A.9-4$\sqrt{5}$B.4$\sqrt{5}$-9C.5$\sqrt{2}$-9D.9+4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.证明:tan($\frac{x}{2}$+$\frac{π}{4}$)+tan($\frac{x}{2}$-$\frac{π}{4}$)=2tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数x满足(3+4i)x=|4+3i|,则x的虚部为(  )
A.$\frac{4}{5}$B.-4C.-$\frac{4}{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A、B、C的对边分别为a、b、c.已知$\frac{b}{a-b-c}$=$\frac{sinA+sinC}{sinB-sinA}$.
(I)求角A;
(Ⅱ)若$\overrightarrow{AB}$•$\overrightarrow{CA}$=2,sinB+sinC=1,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{AB}$=(3,4),$\overrightarrow{BC}$=(-2,-1),则cos∠BAC等于(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{m}$=(cosα+sinα,2015),$\overrightarrow{n}$=(cosα-sinα,1).且$\overrightarrow{m}$∥$\overrightarrow{n}$,则$\frac{1}{cos2α}+tan2α$=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线y1═ax2+bx+c与双曲线y2=$\frac{k^2}{x}$有三个交点A(-3,m),B(-1,n),C(2,p).则不等式ax3+bx2+cx-k2>0的解集为{x|x>2或-3<x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=$\sqrt{2}$,且$\overrightarrow{OA}$$•\overrightarrow{OB}$=1,若点C满足|$\overrightarrow{OA}$$+\overrightarrow{CB}$|=1,则$\overrightarrow{CA}$$•\overrightarrow{CB}$的取值范围是[2-$\sqrt{6}$,2+$\sqrt{6}$],则$\overrightarrow{OC}$$•\overrightarrow{OB}$的取值范围是[3-$\sqrt{2}$,3+$\sqrt{2}$].

查看答案和解析>>

同步练习册答案