| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
分析 由已知利用同角三角函数关系式可求cosθ,进而利用二倍角的余弦函数公式即可计算求值得解.
解答 解:∵tanθ=2,且θ∈$({0,\frac{π}{2}})$,
∴cosθ=$\sqrt{\frac{1}{1+ta{n}^{2}θ}}$=$\sqrt{\frac{1}{1+{2}^{2}}}$=$\frac{\sqrt{5}}{5}$,
∴cos2θ=2cos2θ-1=2×($\frac{\sqrt{5}}{5}$)2-1=-$\frac{3}{5}$.
故选:C.
点评 本题主要考查了同角三角函数关系式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [6,8] | B. | [-2,6] | C. | [0,2] | D. | [6,10] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)的最小正周期为2π | B. | g(x)在$[{-\frac{π}{8},\frac{3π}{8}}]$内单调递增 | ||
| C. | g(x)的图象关于$x=\frac{π}{12}$对称 | D. | g(x)的图象关于$(-\frac{π}{8},0)$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 12π | C. | 20π | D. | 24π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l∥α | B. | l⊥α | C. | l?α | D. | A、C都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com