精英家教网 > 高中数学 > 题目详情
7.若集合A={y|y=${x^{\frac{2}{3}}}$},B={x|y=ln(x+1)},则(∁RA)∩B=(  )
A.(-1,+∞)B.(-1,0)C.D.[0,+∞)

分析 先分别求出集合A和B,从而求出CRA,由此能求出(∁RA)∩B.

解答 解:∵集合A={y|y=${x^{\frac{2}{3}}}$}={y|y≥0},
B={x|y=ln(x+1)}={x|x>-1},
∴CRA={x|x<0}.
∴(∁RA)∩B={x|-1<x<0}=(-1,0).
故选:B.

点评 本题考查交集、补集的求法,是基础题,解题时要认真审,注意交集、补集的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知 锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx+$\frac{π}{6}$)+cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}$=8,设∠BAC=θ,△ABC的面积是S,且满足$\frac{{4\sqrt{3}}}{3}≤S≤4\sqrt{3}$.
(1)求θ的取值范围;
(2)求函数f(θ)=2sin2θ-$\sqrt{3}$sin2θ的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距为2c,直线l:y=kx-kc,若当$k=\sqrt{3}$时,直线l与双曲线的左右两支各有一个交点;且当$k=\sqrt{15}$时,直线l与双曲线的右支有两个不同的交点,则双曲线离心率的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正三棱柱ABC-A1B1C1中,D,E,M分别是线段BC,CC1,AB的中点,AA1=2AB=4.
(1)求证:DE∥平面A1MC;
(2)求点B到面MA1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,两个不同的动点P、Q在椭圆C上且关于x轴对称,设直线AP、BQ的斜率分别为m、n,则当$\frac{1}{2mn}$+ln|m|+ln|n|取最小值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.当前襄阳市正在积极创建文明城市,市某交警支队为调查市民文明驾车的情况,在市区某路口随机检测了40辆车的车速.现将所得数据分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),并绘得如图所示的频率分布直方图.
(1)现有某汽车途径该路口,则其速度低于80km/h的概率是多少?
(2)根据直方图可知,抽取的40辆汽车经过该路口的平均速度约是多少?
(3)在抽取的40辆且速度在[60,70)km/h内的汽车中任取2辆,求这两辆车车速都在[65,70)km/h内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$
(1)若|$\overrightarrow{c}$|=3,$\overrightarrow{c}$∥$\overrightarrow{BC}$,求$\overrightarrow{c}$;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-2$\overrightarrow{b}$互相垂直,求k;
(3)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+k$\overrightarrow{b}$平行,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若M=${A}_{1}^{1}$+${A}_{2}^{2}$+${A}_{3}^{3}$+…+${A}_{2008}^{2008}$,则M的个位数字是(  )
A.3B.8C.0D.5

查看答案和解析>>

同步练习册答案