19£®µ±Ç°ÏåÑôÊÐÕýÔÚ»ý¼«´´½¨ÎÄÃ÷³ÇÊУ¬ÊÐij½»¾¯Ö§¶ÓΪµ÷²éÊÐÃñÎÄÃ÷¼Ý³µµÄÇé¿ö£¬ÔÚÊÐÇøÄ³Â·¿ÚËæ»ú¼ì²âÁË40Á¾³µµÄ³µËÙ£®ÏÖ½«ËùµÃÊý¾Ý·Ö³ÉÁù¶Î£º[60£¬65£©£¬[65£¬70£©£¬[70£¬75£©£¬[75£¬80£©£¬[80£¬85£©£¬[85£¬90£©£¬²¢»æµÃÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©ÏÖÓÐijÆû³µÍ¾¾¶¸Ã·¿Ú£¬ÔòÆäËٶȵÍÓÚ80km/hµÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©¸ù¾ÝÖ±·½Í¼¿ÉÖª£¬³éÈ¡µÄ40Á¾Æû³µ¾­¹ý¸Ã·¿ÚµÄƽ¾ùËÙ¶ÈÔ¼ÊǶàÉÙ£¿
£¨3£©ÔÚ³éÈ¡µÄ40Á¾ÇÒËÙ¶ÈÔÚ[60£¬70£©km/hÄ򵀮û³µÖÐÈÎÈ¡2Á¾£¬ÇóÕâÁ½Á¾³µ³µËÙ¶¼ÔÚ[65£¬70£©km/hÄڵĸÅÂÊ£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÄÜÇó³öËٶȵÍÓÚ80km/hµÄƵÂÊ£¬´Ó¶øÇó³öÏÖÓÐijÆû³µÍ¾¾¶¸Ã·¿Ú£¬ÔòÆäËٶȵÍÓÚ80km/hµÄ¸ÅÂÊ£®
£¨2£©¸ù¾ÝÖ±·½Í¼ÄÜÇó³ö³éÈ¡µÄ40Á¾Æû³µ¾­¹ý¸Ã·¿ÚµÄƽ¾ùËÙ¶È£®
£¨3£©ÔÚ³éÈ¡µÄ40Á¾ÇÒËÙ¶ÈÔÚ[60£¬70£©km/hÄ򵀮û³µ¹²ÓÐ6Á¾£¬ÆäÖÐËÙ¶ÈÔÚ[60£¬65£©km/hÄ򵀮û³µ³éÈ¡2Á¾£¬ËÙ¶ÈÔÚ[65£¬70£©km/hÄ򵀮û³µ³éÈ¡4Á¾£¬´ÓÖÐÈÎÈ¡2Á¾£¬»ù±¾Ê¼þ×ÜÊýn=${C}_{6}^{2}$=15£¬ÕâÁ½Á¾³µ³µËÙ¶¼ÔÚ[65£¬70£©km/hÄÚ°üº¬µÄ»ù±¾Ê¼þ¸öÊým=${C}_{4}^{2}$=6£¬ÓÉ´ËÄÜÇó³öÕâÁ½Á¾³µ³µËÙ¶¼ÔÚ[65£¬70£©km/hÄڵĸÅÂÊ£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃËٶȵÍÓÚ80km/hµÄƵÂÊΪ£º
£¨0.010+0.020+0.040+0.060£©¡Á5=0.65£¬
¡àÏÖÓÐijÆû³µÍ¾¾¶¸Ã·¿Ú£¬ÔòÆäËٶȵÍÓÚ80km/hµÄ¸ÅÂÊÊÇ0.65£®
£¨2£©¸ù¾ÝÖ±·½Í¼¿ÉÖª£¬³éÈ¡µÄ40Á¾Æû³µ¾­¹ý¸Ã·¿ÚµÄƽ¾ùËÙ¶ÈÔ¼ÊÇ£º
0.010¡Á5¡Á62.5+0.020¡Á5¡Á67.5+0.040¡Á5¡Á72.5+0.060¡Á5¡Á77.5+0.050¡Á5¡Á82.5+0.020¡Á5¡Á87.5=77£¨km/h£©£®
£¨3£©ÔÚ³éÈ¡µÄ40Á¾ÇÒËÙ¶ÈÔÚ[60£¬70£©km/hÄ򵀮û³µ¹²ÓУº40¡Á£¨0.010¡Á5+0.020¡Á5£©=6Á¾£¬
ÆäÖÐËÙ¶ÈÔÚ[60£¬65£©km/hÄ򵀮û³µ³éÈ¡40¡Á0.010¡Á5=2Á¾£¬
ËÙ¶ÈÔÚ[65£¬70£©km/hÄ򵀮û³µ³éÈ¡40¡Á0.020¡Á5=4Á¾£¬
´ÓÖÐÈÎÈ¡2Á¾£¬»ù±¾Ê¼þ×ÜÊýn=${C}_{6}^{2}$=15£¬
ÕâÁ½Á¾³µ³µËÙ¶¼ÔÚ[65£¬70£©km/hÄÚ°üº¬µÄ»ù±¾Ê¼þ¸öÊým=${C}_{4}^{2}$=6£¬
¡àÕâÁ½Á¾³µ³µËÙ¶¼ÔÚ[65£¬70£©km/hÄڵĸÅÂÊp=$\frac{m}{n}$=$\frac{6}{15}$=$\frac{2}{5}$£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éƵÂÊ·Ö²¼Ö±·½Í¼¡¢¹Åµä¸ÅÐ͵È֪ʶµã£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈôʵÊýa£¬bÂú×ãa+b£¼0£¬Ôò£¨¡¡¡¡£©
A£®a£¬b¶¼Ð¡ÓÚ0B£®a£¬b¶¼´óÓÚ0
C£®a£¬bÖÐÖÁÉÙÓÐÒ»¸ö´óÓÚ0D£®a£¬bÖÐÖÁÉÙÓÐÒ»¸öСÓÚ0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éèa£¬bÊÇÁ½¸öʵÊý£¬ÒÔÏÂÄÜÍÆ³ö£º¡°a£¬bÖÐÖÁÉÙÓÐÒ»¸ö´óÓÚ1¡±µÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®a+b£¾1B£®a+b=2C£®a2+b2£¾2D£®a+b£¾2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èô¼¯ºÏA={y|y=${x^{\frac{2}{3}}}$}£¬B={x|y=ln£¨x+1£©}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®£¨-1£¬+¡Þ£©B£®£¨-1£¬0£©C£®D£®[0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔÚÆ½ÃæËıßÐÎABCDÖУ¬ÒÑÖªsin¡ÏADC=$\frac{4}{5}$£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$=0£¬|$\overrightarrow{AB}$|=1£¬|$\overrightarrow{AC}$|=8£¬Çó|$\overrightarrow{BD}$|µÄ×î´óÖµ4$\sqrt{2}$+5 £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªiΪÐéÊýµ¥Î»£¬¸´ÊýzÂú×ãz•i=-1£¬Ôòz2017=£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÈôÏòÁ¿$|{\overrightarrow a}|=\sqrt{2}£¬|{\overrightarrow b}|=1£¬|{\overrightarrow c}|=\sqrt{3}$£¬ÇÒ$\overrightarrow a•\overrightarrow b=0$£¬Ôò$\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®$\sqrt{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{\frac{x+1}{x-2}}$µÄ¶¨ÒåÓòÊǼ¯ºÏA£¬º¯Êýg£¨x£©=lg£¨x2-£¨2a+1£©x+a2+a£©µÄ¶¨ÒåÓòÊǼ¯ºÏB£®
£¨1£©·Ö±ðÇ󼯺ÏA¡¢B£»
£¨2£©ÈôA¡ÈB=B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬ÒÑÖªAB=2£¬cos¡ÏABC=$\frac{1}{3}$£¬ÈôµãDΪACµÄÖе㣬ÇÒBD=$\frac{\sqrt{17}}{2}$£¬ÔòsinA=$\frac{2\sqrt{2}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸