精英家教网 > 高中数学 > 题目详情
((本题满分14分)已知,如图四棱锥PABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为GGAD上,且AG=GDBGGCGB=GC=2,EBC的中点,四面体PBCG的体积为.(Ⅰ)求异面直线GEPC所成角的余弦;(Ⅱ)求点D到平面PBG的距离;(Ⅲ)若F点是棱PC上一点,且DFGC,求的值.

解:(I)由已知

∴PG=4           ………4分
如图所示,以G点为原点建立空间直角坐标系
o—xyz,则
B(2,0,0),C(0,2,0),P(0,0,4)
故E(1,1,0)

   ∴异面直线GE与PC所成角的余弦为……6分
(II)平面PBG的单位法向量

∴点D到平面PBG的距离为………10分
(III)设F(0,y , z)

在平面PGC内过F点作FM⊥GC,M为垂足,则
………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

三棱锥的高为,若三个侧面两两垂直,则为△的(  )
A.内心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 在直三棱柱中,,,点的中点,
(1)求证:
(2)求证:
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确的是(   )
A.直线平面,平面//直线,则
B.平面,直线,则//
C.直线是平面的一条斜线,且,则必不垂直
D.一个平面内的两条直线与另一个平面内的两条直线分别平行,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
已知矩形所在平面,为线段上一点,为线段 
的中点.(1)当E为PD的中点时,求证:
(2)当时,求证:BG//平面AEC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过正方形的顶点,引⊥平面,若,则平面ABCD和平面所成的二面角的大小是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则下列命题正确的是(    )
A.若、 m、n∥,则B.若m∥、n∥,则∥n
C.若m⊥、n∥,则mnD.若∥n 、m∥、n∥,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)四棱锥的底面是边长为1的正方形,
,, 上两点,且
.
(1)求证:;
(2)求异面直线PC与AE所成的角
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,FBE的中点,求证:

(1) FD∥平面ABC;
(2)AF⊥平面EDB.

查看答案和解析>>

同步练习册答案