精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow a=(-2,cosα)$,$\overrightarrow b=(-1,sinα)$,$\overrightarrow a∥\overrightarrow b$,则$tan(α+\frac{π}{4})$等于(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 利用两个向量共线的性质,可得-2sinα+cosα=0,易求tanα的值.然后由两角和与差的正切函数进行解答.

解答 解:∵$\overrightarrow a∥\overrightarrow b$,
∴-2sinα+cosα=0,
则tanα=$\frac{1}{2}$,
∴$tan(α+\frac{π}{4})$=$\frac{1+tanα}{1-tanα}$=3,
故选A.

点评 本题主要考查两个向量共线的性质,两个向量坐标形式的运算,同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)的单调区间及在[2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足z•i=3-i,则在复平面内,其共轭复数$\overline{z}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(6,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:
(1)|x-1|+|2x+4|≤8
(2)x-x2+6<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列2,5,11,20,32,x,…中的x等于(  )
A.28B.32C.33D.47

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,A=60°,边$a=3\sqrt{3}$
(1)若c=3,求边b的长;
(2)当c=3时,若$\overrightarrow{CD}=\sqrt{3}\overrightarrow{DA}$,求∠DBC的大小;
(3)若$sinB=(\sqrt{3}-1)sinC$,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}{x^2}$+x-2lnx(x>0).
(1)求f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正数a,b,c满足:5c-3a≤b≤4c-a,clnb≥a+clnc,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

同步练习册答案