精英家教网 > 高中数学 > 题目详情
9.(1)求函数y=(2x2-3)$\sqrt{1+{x^2}}$的导数.
(2)设函数f(x)=(xlnx)-1(x>0且x≠1).求函数f(x)的单调区间.

分析 (1)根据导数的运算法则计算即可;(2)求出f′(x),解关于导函数的不等式,求出函数的单调区间即可.

解答 解:(1)y′=(2x2-3)′$\sqrt{1{+x}^{2}}$+(2x2-3)${(\sqrt{1{+x}^{2}})}^{′}$=4x$\sqrt{1{+x}^{2}}$+$\frac{{2x}^{3}-3x}{\sqrt{1{+x}^{2}}}$;
(2)∵f′(x)=-$\frac{lnx+1}{{{x}^{2}ln}^{2}x}$,
∴由f′(x)=-$\frac{lnx+1}{{{x}^{2}ln}^{2}x}$>0得:lnx+1<0,
∴x<$\frac{1}{e}$,又x>0,
∴0<x<$\frac{1}{e}$,
由f′(x)<0,解得:x>$\frac{1}{e}$,
故f(x)在(0,$\frac{1}{e}$)递增,在($\frac{1}{e}$,+∞)递减.

点评 本题考查了函数的单调性问题,考查导数的应用,熟练掌握求导公式是解题关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.对于一组数据的两个函数模型,其残差平方和分别为152.6 和169.8,若从中选取一个拟合程度较好的函数模型,应选残差平方和为152.6的那个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图的程序框图,若输入n=6,则输出k的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法中错误的是(  )
A.命题:“若y=f(x)是幂函数,则y=f(x)的图象不经过第四象限”的否命题是假命题
B.设a,b∈R,则“a>b”是“a|a|>b|b|”的充要条件
C.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“?n0∈N*,f(n0)∉N*且f(n0)≥n0
D.若p∨q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-2|-|x+1|-1,g=-x+a.
(1)求不等式f(x)≥0的解集;
(2)若方程f(x)=g(x)有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=ax,g(x)=ex,若?x0∈[0,2],f(x0)>g(x0),则实数a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2-4ln(x-1),a∈R
(1)若$a=\frac{1}{2}$,求曲线f(x)在点(2,f(2))处的切线方程;
(2)已知点P(1,1)和函数f(x)图象上的动点M(mf(m)),对任意m∈[2,e+1],直线PM倾斜角都是钝角,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=sin(\frac{πx}{2}+\frac{π}{6})+1$,求在$x∈[{-\frac{2}{3},\frac{5}{3}}]$上的值域[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,已知a3=5,a2+a5=12,an=4a4+1,则n=15.

查看答案和解析>>

同步练习册答案