精英家教网 > 高中数学 > 题目详情

已知函数)满足①;②
(1)求的解析式;
(2)若对任意实数,都有成立,求实数的取值范围.

(1);(2)见解析.

解析试题分析:(1)把条件①;②代入到中求出 和 即可;(2)不等式恒成立?上恒成立,只需要求出 然后求出m的范围即可.
试题解析:(1) ,∴ ,又,即 ,则 ,故 , . 的解析式为.
(2)由(1)知,由题意得上恒成立,易求,故,解得 .
考点:1.求函数解析式;2.函数恒成立问题;3函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且上是减函数,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,判断并证明的奇偶性;
(2)是否存在实数,使得是奇函数?若存在,求出;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若在其定义域内为单调递增函数,求实数的取值范围;
(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)设,,证明:在区间内存在唯一的零点;
(2) 设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设内的零点,判断数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线在点处的切线方程为
(1)确定的值
(2)若过点(0,2)可做曲线的三条不同切线,求的取值范围
(3)设曲线在点处的切线都过点(0,2),证明:当时,

查看答案和解析>>

同步练习册答案