精英家教网 > 高中数学 > 题目详情
17.在(1+$\frac{x}{2}$)8二项展开式中x3的系数为m,则${∫}_{0}^{1}$(x2+mx)dx=(  )
A.$\frac{17}{6}$B.$\frac{20}{6}$C.$\frac{23}{6}$D.$\frac{26}{6}$

分析 首先利用二项式定理求出m,然后计算定积分即可.

解答 解:(1+$\frac{x}{2}$)8二项展开式中x3的系数为m=${C}_{8}^{3}(\frac{1}{2})^{3}$=7,
故${∫}_{0}^{1}$(x2+mx)dx=${∫}_{0}^{1}$(x2+7x)dx=$(\frac{1}{3}{x}^{3}+\frac{7}{2}{x}^{2}){|}_{0}^{1}$=$\frac{23}{6}$;
故选C.

点评 本题考查了二项式定理以及定积分的计算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\left\{\begin{array}{l}cosx,x≤a\\ \frac{1}{x},x>a\end{array}\right.$的值域为[-1,1],则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知M为平面内一动点,设命题甲:存在两个定点F1,F2使得||MF1|-|MF2||是定值,命题乙:M的轨迹是双曲线,则命题甲是命题乙的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆P过点A(2,0),且在y轴上截得的弦长为4.
(1)求动圆圆心P的轨迹C的方程;
(2)设A(x1,y1),B(x2,y2)是曲线C上两个动点,其中x1≠x2,且x1+x2=4,线段AB的垂直平分线l与x轴相交于点Q,求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司近年来产品研发费用支出x万元与公司所获得利润y之间有如下统计数据:
 x 2 3 4 5
 y 18 27 32 35
(1)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$ 
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以下三个命题中,真命题的个数有(  )个
①若$\frac{1}{a}$<$\frac{1}{b}$,则a<b;②若a>b>c,则a|c|>b|c|;③函数f(x)=x+$\frac{1}{x}$有最小值2.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知i为虚数单位,复数z满足$\frac{z}{i}+4=3i$,则复数z的模为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知边长为1的正方形ABCD位于第一象限,且顶点A,D分别在x,y的正半轴上(含原点O)滑动,则|$\overrightarrow{OB}$+$\overrightarrow{OC}$|的最大值是(  )
A.1B.2C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知锐角θ的终边经过点$P({m,\sqrt{3}})$且$cosθ=\frac{m}{2}$,将函数f(x)=1+2sinxcosx的图象向右平移θ个单位后得到函数y=g(x)的图象,则y=g(x)的图象的一个对称中心为(  )
A.$({\frac{π}{3},0})$B.$({\frac{π}{6},0})$C.$({\frac{π}{3},1})$D.$({\frac{π}{6},1})$

查看答案和解析>>

同步练习册答案