精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sin2x+2sinxcosx+3cos2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],求函数f(x)的最值及相应x的取值.

分析 (Ⅰ)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再由正弦函数的周期和单调增区间,解不等式即可得到.
(Ⅱ)由x的范围,可得2x-2x+$\frac{π}{4}$的范围,再由正弦函数的图象和性质,即可得到最值.

解答 解:(Ⅰ)f(x)=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1
=sin2x+cos2x+2=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+2,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
则kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z,
则有函数的单调递增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
则有sin(2x+$\frac{π}{4}$)∈[-1,1],
则当x=$\frac{π}{2}$时,f(x)取得最小值,且为1,
当x=$\frac{π}{8}$时,f(x)取得最大值,且为$\sqrt{2}$+2.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性以及正弦函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.等差数列{an}中,a1=5,a2=3,则数列{an}前n项和Sn取最大值时的n的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设(x)=|xex|,若关于x的方程(1-t)f2(x)+(t-2)f(x)+2t=0有四个不同的实数解,则实数t的取值范围为(  )
A.(-∞,0)B.(0,$\frac{1}{e+1}$)C.($\frac{e}{{e}^{2}+1}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知cosα=$\frac{12}{13}$,α∈($\frac{3π}{2}$,2π)
(Ⅰ)求sin2α的值;
(Ⅱ)求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若a2,a3,a4,a5成等比数列,其公比为2,则$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在区间[0,1]上随机抽取两个数x,y,则事件“xy≥$\frac{1}{2}$”发生的概率为$\frac{1-ln2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC中,sinA=sinC•cosB,且△ABC的面积S为8.
(1)求角C的大小;
(2)求|$\overrightarrow{AC}$+2$\overrightarrow{BC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,若a1=2,$\frac{{{3^{{a_{n+1}}}}}}{{{3^{a_n}}}}$=1+$\frac{1}{n}$,则a9=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|y=lg(x2-x)},B={y|y=x2+x+1,x∈R}.
(1)求A,B;
(2)求A∪B,A∩(∁RB).

查看答案和解析>>

同步练习册答案