分析 把已知数列递推式变形,然后利用累积法结合对数的运算性质求解.
解答 解:由$\frac{{{3^{{a_{n+1}}}}}}{{{3^{a_n}}}}$=1+$\frac{1}{n}$,得${3}^{{a}_{n+1}-{a}_{n}}=1+\frac{1}{n}$,
∴${a}_{n+1}-{a}_{n}=lo{g}_{3}(1+\frac{1}{n})$,
又a1=2,
∴a9=(a9-a8)+(a8-a7)+…+(a2-a1)+a1
=$lo{g}_{3}(1+\frac{1}{8})+lo{g}_{3}(1+\frac{1}{7})+…+lo{g}_{3}(1+\frac{1}{1})+2$
=$lo{g}_{3}(\frac{9}{8}×\frac{8}{7}×…×\frac{2}{1})+2$=log39+2=4.
故答案为:4.
点评 本题考查数列递推式,考查了对数的运算性质,训练了累积法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com