精英家教网 > 高中数学 > 题目详情
7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}-1.{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$a1=m(m>0),有以下结论:
①若m=$\frac{4}{5}$,则a3=3;
②若a3=2,则m可以取3个不同的值;
③若m=$\sqrt{2}$,则{an}是周期为3的数列;
④存在m∈Q且m≥2,数列{an}是周期数列.
其中正确结论的序号是②③.

分析 对于①,直接代值,根据数列的递推公式关系即可求出,
对于②,由a3=2,分类讨论即可求出m的值,
对于③由②可知正确m=$\sqrt{2}$>1,所以数列{an}是周期为3的数列,
对于④,利用反证法,假设存在m∈Q且m≥2,使得数列{an}是周期数列,得出假设不正确.

解答 解:对于①,当m=$\frac{4}{5}$时,a2=$\frac{1}{{a}_{1}}$=$\frac{5}{4}$,a3=a2-1=$\frac{5}{4}$-1=$\frac{1}{4}$,故①为不正确,
对于②由a3=2,若a3=a2-1=2,则a2=3,若a1-1=3,则a1=4.
若a1=3,则$\frac{1}{{a}_{1}}$=$\frac{1}{3}$.
由a3=2,若a3=$\frac{1}{{a}_{2}}$,则a2=$\frac{1}{2}$,若a1-1=$\frac{1}{2}$,则a1=$\frac{3}{2}$.
若$\frac{1}{{a}_{1}}$=$\frac{1}{2}$,则a1=2,不合题意.
所以,a3=2时,m即a1的不同取值有3个.故②正确,
对于③,m=$\sqrt{2}$>1,所以数列{an}是周期为3的数列,所以③正确;
对于④,假设存在m∈Q且m≥2,使得数列{an}是周期数列.则当m=2时,a2=a1-1=1,∴a3=$\frac{1}{{a}_{2}}$=…=an(n≥2),此时数列{an}不是周期数列.
当m>2时,当0<m-k≤1时,ak+1=a1-k=m-k.∴ak+2=$\frac{1}{{a}_{k+1}}$=$\frac{1}{m-k}$>1.若ak+2=ai,1≤i≤k+1,则$\frac{1}{m-k}$=m-(i-1),化为m2-m(k+i-1)+ki-k-1=0,则△=(k+i-1)2-4(ki-k-1)不为平方数,因此假设不正确.可知④不正确.
综上可知:只有②③正确
故答案为:②③

点评 本题考查了简单的合情推理,考查了分类讨论的数学思想,训练了学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设(x)=|xex|,若关于x的方程(1-t)f2(x)+(t-2)f(x)+2t=0有四个不同的实数解,则实数t的取值范围为(  )
A.(-∞,0)B.(0,$\frac{1}{e+1}$)C.($\frac{e}{{e}^{2}+1}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC中,sinA=sinC•cosB,且△ABC的面积S为8.
(1)求角C的大小;
(2)求|$\overrightarrow{AC}$+2$\overrightarrow{BC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,若a1=2,$\frac{{{3^{{a_{n+1}}}}}}{{{3^{a_n}}}}$=1+$\frac{1}{n}$,则a9=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m、n∈R),则m2+(n-2)2的取值范围是(  )
A.(1,$\sqrt{5}$)B.(1,5)C.($\frac{\sqrt{2}}{2}$,5)D.($\frac{\sqrt{2}}{2}$,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2sin(ωx-$\frac{π}{6}$)(ω>0)的最小正周期为π,则该函数的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{7π}{12}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.cos(-150°)=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|y=lg(x2-x)},B={y|y=x2+x+1,x∈R}.
(1)求A,B;
(2)求A∪B,A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x|x<4},B={x|$\frac{x}{x-1}$<0},则“m∈A”是“m∈B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案