精英家教网 > 高中数学 > 题目详情
2.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m、n∈R),则m2+(n-2)2的取值范围是(  )
A.(1,$\sqrt{5}$)B.(1,5)C.($\frac{\sqrt{2}}{2}$,5)D.($\frac{\sqrt{2}}{2}$,$\sqrt{5}$)

分析 根据题意可得m、n满足的不等式组,在mon坐标系内作出不等式组对应的平面区域,利用线性规划,结合两点间的距离是即可得到结论.

解答 解:∵点P在△ABC内部,$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{m>0}\\{n>0}\\{m+n<1}\end{array}\right.$,
∵在直角坐标系mon内,m2+(n-2)2表示平面区域$\left\{\begin{array}{l}{m>0}\\{n>0}\\{m+n<1}\end{array}\right.$内的点(m,n)到点(0,2)的距离的平方.
∴数形结合知(0,2)到(0,1)的距离最小,到(1,0)的距离最大
∴最小距离为1,最大距离为$\sqrt{(0-1)^{2}+(2-0)^{2}}$=$\sqrt{5}$
∴m2+(n-2)2的取值范围是 (1,5),
故选B.

点评 本题主要考查线性规划的应用,以平面向量为载体,求(m-1)2+(n-1)2+1的取值范围.着重考查了向量的线性运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,角A,B,C所对的边分别为a,b,c且2acos2C+2ccosAcosC+b=0.
(1)求角C的大小;
(2)若b=4sinB,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(12,6),动点P在抛物线x2=4y上,则P点到A的距离与P到x的距离之和的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数g(x)=3x+t的图象不经过第二象限,则t的取值范围为(  )
A.t≤-1B.t<-1C.t≤-3D.t≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.郴州市某路公共汽车每7分钟一趟,某位同学每天乘该路公共汽车上学,则他等车时间小于3分钟的概率为(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}-1.{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$a1=m(m>0),有以下结论:
①若m=$\frac{4}{5}$,则a3=3;
②若a3=2,则m可以取3个不同的值;
③若m=$\sqrt{2}$,则{an}是周期为3的数列;
④存在m∈Q且m≥2,数列{an}是周期数列.
其中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.高一(3)班共有50人,若其中文艺爱好者20人,体育爱好者15人,文艺.体育均不爱好的20人,则文艺.体育均爱好的人数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD,AD=BC=1,若PA⊥平面ABCD,∠ABC=60°
(1)求证:平面PAC⊥平面PBC;
(2)若点D到平面PBC的距离为$\frac{{\sqrt{3}}}{4}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得500的所有正约数之和为1092.

查看答案和解析>>

同步练习册答案