精英家教网 > 高中数学 > 题目详情
17.设(x)=|xex|,若关于x的方程(1-t)f2(x)+(t-2)f(x)+2t=0有四个不同的实数解,则实数t的取值范围为(  )
A.(-∞,0)B.(0,$\frac{1}{e+1}$)C.($\frac{e}{{e}^{2}+1}$,1)D.(1,+∞)

分析 函数f(x)=|xex|是分段函数,通过求导分析得到函数f(x)在(0,+∞)上为增函数,在(-∞,-1)上为增函数,在(-1,0)上为减函数,求得函数f(x)在(-∞,0)上,当x=-1时有一个最大值 $\frac{1}{e}$,所以,由(1-t)f2(x)+(t-2)f(x)+2t=0,可得f(x)=2或f(x)=$\frac{t}{1-t}$,要使方程(1-t)f2(x)+(t-2)f(x)+2t=0有四个实数根,可得0<$\frac{t}{1-t}$<$\frac{1}{e}$,即可求出实数t的取值范围.

解答 解:f(x)=|xex|=$\left\{\begin{array}{l}{x{e}^{x},x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,
当x≥0时,f′(x)=ex+xex≥0恒成立,所以f(x)在[0,+∞)上为增函数;
当x<0时,f′(x)=-ex-xex=-ex(x+1),
由f′(x)=0,得x=-1,当x∈(-∞,-1)时,f′(x)=-ex(x+1)>0,f(x)为增函数,
当x∈(-1,0)时,f′(x)=-ex(x+1)<0,f(x)为减函数,
所以函数f(x)=|xex|在(-∞,0)上有一个最大值为f(-1)=-(-1)e-1=$\frac{1}{e}$,
由(1-t)f2(x)+(t-2)f(x)+2t=0,可得f(x)=2或f(x)=$\frac{t}{1-t}$
所以0<$\frac{t}{1-t}$<$\frac{1}{e}$,
所以0<t<$\frac{1}{1+e}$,
所以,使得关于x的方程(1-t)f2(x)-f(x)+t=0有四个不同的实数根的t的取值范围(0,$\frac{1}{1+e}$),
故选:B.

点评 本题考查了根的存在性及根的个数的判断,考查了利用函数的导函数分析函数的单调性,考查了学生分析问题和解决问题的能力,解答此题的关键是分析出方程(1-t)f2(x)+(t-2)f(x)+2t=0有四个实数根时f(x)的取值情况,此题属于中高档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)(x∈R)满足f(4)=2,$f'(x)<\frac{1}{3}$,则不等式$f({x^2})<\frac{x^2}{3}+\frac{2}{3}$的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,c=$\sqrt{5}$,则△ABC的面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.反证法证明三角形的内角中至少有一个不小于60°,应假设三角形中三个内角都小于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,角A,B,C所对的边分别为a,b,c且2acos2C+2ccosAcosC+b=0.
(1)求角C的大小;
(2)若b=4sinB,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(x+ay)6展开式中x3y3的系数为-160,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}\begin{array}{l}{x+5},{x≤-1}\end{array}\\ \begin{array}{l}{-{x^2}+1},{-1<x<1}\end{array}\\ \begin{array}{l}{2x},{x≥1}\end{array}\end{array}$
(1)求f(3),f[f(-3)]的值;
(2)画出y=f(x)的图象,书写函数的单调递增区间;
(3)若f(a)=$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin2x+2sinxcosx+3cos2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],求函数f(x)的最值及相应x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}-1.{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$a1=m(m>0),有以下结论:
①若m=$\frac{4}{5}$,则a3=3;
②若a3=2,则m可以取3个不同的值;
③若m=$\sqrt{2}$,则{an}是周期为3的数列;
④存在m∈Q且m≥2,数列{an}是周期数列.
其中正确结论的序号是②③.

查看答案和解析>>

同步练习册答案