分析 先写出前几项的结果,再根据数列的函数特征得到后面的结果,问题得以解决.
解答 解:[$\frac{(0+3)×(0+4)}{(0+1)×(0+2)}$]=6,[$\frac{(1+3)×(1+4)}{(1+1)×(1+2)}$]=[$\frac{10}{3}$]=3,[$\frac{(2+3)×(2+4)}{(2+1)×(2+2)}$]=[$\frac{5}{2}$]=2,[$\frac{(3+3)(3+4)}{(3+1)(3+2)}$]=[2.1]=2,[$\frac{(4+3)(4+4)}{(4+1)(4+2)}$]=[$\frac{28}{15}$]=1,
由于数列$\frac{(n+3)(n+4)}{(n+1)(n+2)}$为递减数列,且$\underset{lim}{n→∞}$$\frac{(n+3)(n+4)}{(n+1)(n+2)}$=1,
[$\frac{(2016+3)×(2016+4)}{(2016+1)×(2016+2)}$]=1,
∴[$\frac{(0+3)×(0+4)}{(0+1)×(0+2)}$]+[$\frac{(1+3)×(1+4)}{(1+1)×(1+2)}$]+[$\frac{(2+3)×(2+4)}{(2+1)×(2+2)}$]+…+[$\frac{(2016+3)×(2016+4)}{(2016+1)×(2016+2)}$]=6+3+2+2+$\underset{\underbrace{1+1+…+1}}{2013个}$=13+2013=2026,
故答案为:2026
点评 本题考查了数列的数列的函数特征和新定义的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)f(-x)是偶函数 | B. | f(x)|f(-x)|是奇函数 | C. | f(x)-f(-x)是偶函数 | D. | f(x)+f(-x)是奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<-1 | B. | a≤-1 | C. | a>2 | D. | a≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com