精英家教网 > 高中数学 > 题目详情
20.在锐角三角形ABC中,A=2B,B,C的对边分别是b、c.则$\frac{a}{b+c}$的取值范围是($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

分析 由A=2B可得C=180°-3B,由A,B,C∈(0°,90°)可先确定B的范围,利用正弦定理化简表达式,求出范围即可.

解答 解:在锐角△ABC中,
∵A=2B,
∴C=180°-3B,
∴$\left\{\begin{array}{l}{\stackrel{0°<B<90°}{0°<2B<90°}}\\{0°<180°-3B<90°}\end{array}\right.$,
∴∠B∈(30°,45°),cosB∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
由正弦定理可知:$\frac{a}{b+c}$=$\frac{sin2B}{sinB+sin3B}$=$\frac{sin2B}{2sin2BcosB}$=$\frac{1}{2cosB}$∈($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).
故答案为:($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

点评 本题主要考查正弦定理在解三角形中的应用,注意锐角三角形中角的范围的确定,是本题解答的关键,考查计算能力,逻辑推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,三个边长为1的等边三角形有一条边在同一条直线上,边GD上有2016个不同的点P1、P2、P3、…、P2016,则$\overrightarrow{AF}•({{{\overrightarrow{AP}}_1}+{{\overrightarrow{AP}}_2}+{{\overrightarrow{AP}}_3}+…+{{\overrightarrow{AP}}_{2016}}})$=9072.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$平行,则k=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=sin(2x+$\frac{π}{3}$)的图象上所有的点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为(  )
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x+$\frac{π}{3}$)C.y=sin(4x+$\frac{2π}{3}$)D.y=sin(4x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:[$\frac{(0+3)×(0+4)}{(0+1)×(0+2)}$]+[$\frac{(1+3)×(1+4)}{(1+1)×(1+2)}$]+[$\frac{(2+3)×(2+4)}{(2+1)×(2+2)}$]+…+[$\frac{(2016+3)×(2016+4)}{(2016+1)×(2016+2)}$]=2026.
(其中[x]表示不超过x的最大整数,比如[3.2]=3,[6]=6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知an=log(n+1)(n+2)(n∈N*).我们把使乘积a1•a2•a3•…•an为整数的数n叫做“完美数”,则在区间(1,2016)内的所有完美数的和为(  )
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x},x∈[-1,-\frac{1}{2})\\-\frac{5}{2},x∈[-\frac{1}{2},\frac{1}{2})\\ x-\frac{1}{x},x∈[\frac{1}{2},1)\end{array}$.
(1)求f(x)的值域;
(2)设函数g(x)=ax-3,x∈[-1,1],若对于任意x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=cos2(x-φ)-sin2(x-φ),其中φ∈(0,$\frac{π}{2}}$),已知f(x)图象的一个对称中心为点($\frac{π}{3}$,0).
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{\sqrt{2}}{2}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,则f(a)等于(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

同步练习册答案