精英家教网 > 高中数学 > 题目详情
14.已知直线l过点P(1,2),倾斜角为$\frac{3π}{4}$,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l与曲线C交于A、B两点.
(1)求直线l的参数方程及曲线C的直角坐标方程;
(2)求|PA|•|PB|

分析 (1)由直线l过点P(1,2),倾斜角为$\frac{3π}{4}$,可得直线l参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数);曲线C的极坐标方程为ρsin2θ=4cosθ,化为ρ2sin2θ=4ρcosθ,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出直角坐标方程;
(2)由于点P(1,2)满足抛物线方程y2=4x.即可得出|PA|•|PB|.

解答 解:(1)由直线l过点P(1,2),倾斜角为$\frac{3π}{4}$,可得直线l参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数);
曲线C的极坐标方程为ρsin2θ=4cosθ,化为ρ2sin2θ=4ρcosθ,∴y2=4x.
(2)∵点P(1,2)满足抛物线方程y2=4x.
∴|PA|•|PB|=0.

点评 本题考查了直线的参数方程应用、抛物线的极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD.
(1)求证:BC⊥平面PAB;
(2)求证:DC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2\sqrt{3}+tcosα}\\{y=-2+tsinα}\end{array}\right.$(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2,若C1与C2有公共点,则α的取值范围是(  )
A.(0,$\frac{π}{6}$)B.(0,$\frac{π}{3}$]C.[0,$\frac{π}{6}$]D.[0,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当0<x<a时,不等式$\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$≥4恒成立,则a的取值范围为(0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=3t+2}\\{y=4t+3}\end{array}}\right.$(t为参数),圆C的极坐标方程为ρ=2cosθ,则圆C的圆心到直线l的距离等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知4a=$\sqrt{2}$,lgx=a,则x=(  )
A.10B.100C.$\sqrt{10}$D.10${\;}^{\frac{1}{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以坐标原点为极点,以x轴的非负半轴为极轴简历极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,$\frac{π}{2}$]
(1)将半圆C化为参数方程;
(2)已知直线l:y=-$\frac{\sqrt{3}}{3}$x+6,点M在半圆C上,过点M斜率为-1直线与l交于点Q,当|MQ|最小值时,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)设α,β∈[-$\frac{π}{2}$,0],f(3α+π)=$\frac{10}{13}$,f(3β+$\frac{5π}{2}$)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(Ⅱ)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

同步练习册答案