分析 由正弦定理可得sinB=$\frac{\sqrt{3}}{x}$,结合范围0<B<120°,要使三角形有两解,得到60°<B<120°,且B≠90°,即$\frac{\sqrt{3}}{2}$<sinB<1,从而解得x的求值范围.
解答 解:∵在△ABC中,a=x,b=2,A=60°,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}}{x}$,
∵A=60°,
∴0<B<120°,要使三角形有两解,得到60°<B<120°,且B≠90°,即$\frac{\sqrt{3}}{2}$<sinB<1,
∴$\frac{\sqrt{3}}{2}$<$\frac{\sqrt{3}}{x}$<1,解得:$\sqrt{3}$<x<2,
故x的取值范围是($\sqrt{3}$,2).
故答案为:($\sqrt{3}$,2).
点评 本题主要考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,考查了数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x-y=0 | B. | x+y=0 | C. | x-y-2=0 | D. | x+y-2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{2},+∞})$ | B. | (-∞,2] | C. | $({0,\frac{1}{2}}]$ | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a${\;}^{\frac{2}{3}}$ | B. | $\sqrt{{a}^{3}}$ | C. | $\frac{1}{\sqrt{{a}^{3}}}$ | D. | $\frac{1}{\root{3}{{a}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18π | B. | 36π | C. | 54π | D. | 72π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{5}$ | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | 16 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com