精英家教网 > 高中数学 > 题目详情
12.已知在△ABC中,a=x,b=2,A=60°,若三角形有两解,则x的取值范围是($\sqrt{3}$,2).

分析 由正弦定理可得sinB=$\frac{\sqrt{3}}{x}$,结合范围0<B<120°,要使三角形有两解,得到60°<B<120°,且B≠90°,即$\frac{\sqrt{3}}{2}$<sinB<1,从而解得x的求值范围.

解答 解:∵在△ABC中,a=x,b=2,A=60°,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}}{x}$,
∵A=60°,
∴0<B<120°,要使三角形有两解,得到60°<B<120°,且B≠90°,即$\frac{\sqrt{3}}{2}$<sinB<1,
∴$\frac{\sqrt{3}}{2}$<$\frac{\sqrt{3}}{x}$<1,解得:$\sqrt{3}$<x<2,
故x的取值范围是($\sqrt{3}$,2).
故答案为:($\sqrt{3}$,2).

点评 本题主要考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,考查了数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是(  )
A.x-y=0B.x+y=0C.x-y-2=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图“月亮图”是由曲线C1与C2构成,曲线C1是以原点O为中心,F1(-1,0),F2(1,0)为焦点的椭圆的一部分,曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A($\frac{3}{2}$,$\sqrt{6}$)是两条曲线的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1,C2依次交于B,C,D,E四点,若G为CD的中点、H为BE的中点,问:$\frac{|BE|•|G{F}_{2}|}{|CD|•|H{F}_{2}|}$是否为定值?若是求出该定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点P(1,2)到直线y=-1的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y={2^{{x^2}-2x}}$的值域为(  )
A.$[{\frac{1}{2},+∞})$B.(-∞,2]C.$({0,\frac{1}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a为非零实数,则a${\;}^{-\frac{2}{3}}$=(  )
A.a${\;}^{\frac{2}{3}}$B.$\sqrt{{a}^{3}}$C.$\frac{1}{\sqrt{{a}^{3}}}$D.$\frac{1}{\root{3}{{a}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,再将所得函数图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,求g(x)在$[{0,\frac{π}{2}}]$的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知四棱锥S-ABCD的所有顶点都在同一圆面上,底面ABCD是正方形且和球心O在同一平面内,若此四棱锥的最大体积为18,则球O的表面积等于(  )
A.18πB.36πC.54πD.72π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量a,b满足b=2a+$\frac{3}{2}$,若点(m,n)在函数y=-$\frac{1}{2}$x2+3lnx上,则(a-m)2+(b-n)2的最小值为(  )
A.$\frac{16}{5}$B.$\frac{{4\sqrt{5}}}{5}$C.16D.4

查看答案和解析>>

同步练习册答案