分析 依据展开图与圆锥的对应关系列方程解出圆锥的底面半径和母线长,求出圆锥的高,得出体积.
解答 解:设圆锥的底面半径为r,母线长为l,则$\left\{\begin{array}{l}{l=2}\\{2π=2πr}\end{array}\right.$,解得r=1,l=2.
∴圆锥的高h=$\sqrt{{l}^{2}-{r}^{2}}$=$\sqrt{3}$.∴圆锥的体积V=$\frac{1}{3}$πr2h=$\frac{\sqrt{3}π}{3}$.
故答案为$\frac{{\sqrt{3}π}}{3}$.
点评 本题考查了圆锥的侧面展开图,圆锥的结构特征,圆锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β | |
| B. | 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β | |
| C. | 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ | |
| D. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α=0,则sinα≥cosα | B. | 若sinα<cosα,则α≠0 | ||
| C. | 若α≠0,则sinα≥cosα | D. | 若sinα≥cosα,则α≠0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com