分析 (I)利用余弦定理、和差公式即可得出.
(II)利用余弦定理与三角形面积计算公式即可得出.
解答 解:(I)∵a+b=$\sqrt{3}$bsinC+ccosB,∴a+b=$\sqrt{3}$bsinC+c×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$.
化为:$\sqrt{3}$sinC-cosC=1,可得$sin(C-\frac{π}{6})$=$\frac{1}{2}$,C∈(0,π).
∴$C-\frac{π}{6}$=$\frac{π}{6}$,解得C=$\frac{π}{3}$.
(II)由余弦定理可得:$(2\sqrt{7})^{2}$=a2+b2-2ab×$\frac{1}{2}$,$\frac{1}{2}ab$×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
解得a=2,b=6,或a=6,b=2.
点评 本题考查了余弦定理、三角形面积计算公式、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 正次品 | 甲正品 甲正品 乙正品 | 甲正品 甲正品 乙次品 | 甲正品 甲次品 乙正品 | 甲正品 甲次品 乙次品 | 甲次品 甲次品 乙正品 | 甲次品 甲次品 乙次品 |
| 频 数 | 15 | 20 | 16 | 31 | 10 | 8 |
| 正次品 | 乙正品 乙正品 甲正品 | 乙正品 乙正品 甲次品 | 乙正品 乙次品 甲正品 | 乙正品 乙次品 甲次品 | 乙次品 乙次品 甲正品 | 乙次品 乙次品 甲次品 |
| 频 数 | 8 | 10 | 20 | 22 | 20 | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com