【题目】已知函数.
(1)当时,求函数的极值;
(2)证明:当时,.
【答案】(1)在处取得极小值为,无极大值;(2)详见解析.
【解析】
(1)当a=1时,f(x)=(x﹣1)ex+x2.f′(x)=xex+2x=x(ex+2),令f′(x)=0,解得x.即可得出极值;(2)令h(x)=f(x)﹣ln(ax﹣1)﹣x2﹣x﹣1=(ax﹣1)ex﹣ln(ax﹣1)﹣x﹣1.x.h′(x)=(ax﹣1+a)ex1=(ax﹣1+a)(ex).令u(x)=ex,利用导数研究其单调性极值即可得出.
(1)当时,
令得
当时,单调递减;
当时,单调递增;
所以在处取得极小值为,无极大值.
(2)设
则
设,则
在区间上单调递增
又,当时,,由,解得,
当时, ,故有唯一的零点
当时,,当时,
且
当时,
科目:高中数学 来源: 题型:
【题目】某教师将寒假期间该校所有学生阅读小说的时间统计如下图所示,并统计了部分学生阅读小说的类型,得到的数据如下表所示:
男生 | 女生 | |
阅读武侠小说 | 80 | 30 |
阅读都市小说 | 20 | 70 |
(1)是否有99.9%的把握认为“性别”与“阅读小说的类型”有关?
(2)求学生阅读小说时间的众数和平均数(同一组数据用该组区间的中点值作代表);
(3)若按照分层抽样的方法从阅读时间在、的学生中随机抽取6人,再从这6人中随机挑选2人介绍选取小说类型的缘由,求所挑选的2人阅读时间都在的概率.
附:,.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.
(l)求椭圆的标准方程;
(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()
A. 函数在上单调递增
B. 函数的图像关于直线对称
C. 当时,函数的最小值为
D. 要得到函数的图像,只需要将的图像向右平移个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.若数列、的极限都存在,且,则数列的极限存在
B.若数列、的极限都不存在,则数列的极限也不存在
C.若数列、的极限都存在,则数列、的极限也存在
D.数,若数列的极限存在,则数列的极限也存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的参数方程;
(2)若曲线与曲线,在第一象限分别交于两点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的参数方程;
(2)若曲线与曲线,在第一象限分别交于两点,且,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com