分析 (Ⅰ)利用坐标法求出$\overrightarrow{OR}$的坐标,结合向量数量积的定义转化为一元二次函数,利用一元二次函数的性质进行求解.
(Ⅱ)根据向量数量积的应用进行求解即可.
解答 解(1)由题意,设$\overrightarrow{OR}$=t$\overrightarrow{OP}$=(2t,t),
则$\overrightarrow{RA}$=$\overrightarrow{OA}-\overrightarrow{OR}$=(1-2t,7-t),
$\overrightarrow{RB}$=$\overrightarrow{OB}-\overrightarrow{OR}$=(5-2t,1-t).
所以$\overrightarrow{RA}$$•\overrightarrow{RB}$=(1-2t)(5-2t)+(7-t)(1-t)=5t2-20t+12=5(t-2)2-8,
所以当t=2时,$\overrightarrow{RA}$$•\overrightarrow{RB}$最小,即$\overrightarrow{OR}$=(4,2).
(2)设向量$\overrightarrow{RA}$与$\overrightarrow{RB}$的夹角为θ,由(1)得$\overrightarrow{RA}$=(-3,5),$\overrightarrow{RB}$=(1,-1),
所以cosθ=$\frac{\overrightarrow{RA}•\overrightarrow{RB}}{|\overrightarrow{RA}||\overrightarrow{RB}|}$=$\frac{-3-5}{\sqrt{9+25}•\sqrt{2}}$=-$\frac{4\sqrt{17}}{17}$.
点评 本题主要考查向量夹角和向量数量积的应用,根据向量数量积的应用是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (7,8) | B. | [4$\sqrt{3}$,8) | C. | [4$\sqrt{3}$,+∞) | D. | (7,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2sin(2x-$\frac{5π}{6}$) | B. | f(x)=2sin(2x-$\frac{π}{6}$) | C. | f(x)=2sin(2x+$\frac{5π}{6}$) | D. | f(x)=2sin(2x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com