精英家教网 > 高中数学 > 题目详情
7.(1)化简:f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$;
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

分析 (1)原式利用诱导公式化简,计算即可得到结果.
(2)原式利用同角三角函数间基本关系变形,再利用二次函数的性质化简即可得到结果.

解答 解:(1)f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
=$\frac{sinα•cosα•sinα}{sinα•sinα}$=cosα
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$=$\frac{\sqrt{(sin10°-cos10°)^{2}}}{cos10°-\sqrt{si{n}^{2}170°}}$
=$\frac{cos10°-sin10°}{cos10°-sin10°}$=1.

点评 本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和,且样本容量为160,则中间一组的频数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设Sn是数列{an}(n∈N+)的前n项和,n≥2时点(an-1,2an)在直线y=2x+1上,且{an}的首项a1是二次函数y=x2-2x+3的最小值,则S9的值为(  )
A.6B.7C.36D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(1+$\sqrt{3}$tanx)cos2x.
(1)若α为第二象限角,且sina=$\frac{\sqrt{6}}{3}$,求f(α)的值;
(2)求函数f(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.tan13°tan17°+$\sqrt{3}$(tan13°+tan17°)=(  )
A.1B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),设R是直线OP上的一点,其中O是坐标原点.
(Ⅰ)求使$\overrightarrow{RA}$$•\overrightarrow{RB}$取得最小值时$\overrightarrow{OR}$的坐标的坐标;
(Ⅱ)对于(1)中的点R,求$\overrightarrow{RA}$与$\overrightarrow{RB}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,且an=ncos$\frac{nπ}{2}$+1(n∈N*),则S2016=(  )
A.3024B.1007C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.
(1)求证:BC⊥AM;
(2)若AM∥平面BDE,试求线段AM的长.

查看答案和解析>>

同步练习册答案