精英家教网 > 高中数学 > 题目详情
18.4个人排成一排照相,不同排列方式的种数为24(结果用数值表示).

分析 根据题意,由排列数公式直接计算即可.

解答 解:4个人排成一排照相,不同排列方式的种数为A44=24种,
故答案为:24.

点评 本题考查排列组合的运用,关键要牢记排列数公式并灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2-a2=ac.
(Ⅰ) 若$cosB=\frac{1}{4}$,a=1,求△ABC的面积;
(Ⅱ)若$A=\frac{π}{6}$,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F2,M是双曲线C在第一象限上一点,N与M关于原点对称,MF2交双曲线C于另一点P,NF2⊥PF2,|NF2|=|PF2|,则双曲线C的渐近线为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的算法框图中,e是自然对数的底数,则输出的i的值为(参考数值:ln2016≈7.609)(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.0B.6$\sqrt{2}$C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设直线l与平面α平行,直线m在平面α上,那么(  )
A.直线l平行于直线mB.直线l与直线m异面
C.直线l与直线m没有公共点D.直线l与直线m不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x2+4x>0},B={x|x>m},若A∩B={x|x>0},则实数m的值可以是(  )
A.1B.2C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,O为坐标原点,以OF2为直径的圆交双曲线于A,B两点,若△F1AB的外接圆过点($\frac{4\sqrt{{a}^{2}+{b}^{2}}}{5}$,0),则该双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线3x-y+1=0平行,F1、F2是双曲线C的左、右焦点,M是双曲线C上一点,且|MF1|=$\frac{3}{2}$|MF2|=6,则双曲线的焦距长为(  )
A.6B.2C.2$\sqrt{10}$D.8

查看答案和解析>>

同步练习册答案