精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,(a为常数且a>0).
(1)若函数的定义域为 ,值域为 ,求a的值;
(2)在(1)的条件下,定义区间(m,n),[m,n],(m,n],[m,n)的长度为n﹣m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集构成的各区间的长度和超过 ,求b的取值范围.

【答案】
(1)解:由三角函数公式化简可得:

f(x)=a(sinxcosx+ + cos2x)

=a( sin2x+ + cos2x)

=a[ +sin(2x+ )],

∵x∈ ,∴2x+ ∈[ ],

∴sin(2x+ )∈[﹣ ,1],

+sin(2x+ )∈[0,1+ ],

∵由已知可得函数值域为

∴a=1


(2)解:由题意可得 ,即

要使解集构成的各区间的长度和超过 ,需 ,解得


【解析】(1)由三角函数公式化简可得f(x)=a[ +sin(2x+ )],由已知函数的值域可得a值.(2)由题意可得 要使解集构成的各区间的长度和超过 ,需 ,解不等式可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.

(1)试问此次参赛的学生总数约为多少人?

(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M(x,y)到直线lx=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点.若APB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1.

(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数ab的值;

(Ⅱ)讨论函数f(x)的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证:

(1)直线EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司研究一款畅销保险产品的保费与销量之间的关系,根据历史经验,若每份保单的保费在元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下的对应数据:

(1)试据此求出关于的线性回归方程

(2)若把回归方程当做的线性关系,试计算每份保单的保费定为多少元此产品的保费总收入最大,并求出该最大值;

参考公式:

参考数据:

查看答案和解析>>

同步练习册答案