相关习题
 0  234178  234186  234192  234196  234202  234204  234208  234214  234216  234222  234228  234232  234234  234238  234244  234246  234252  234256  234258  234262  234264  234268  234270  234272  234273  234274  234276  234277  234278  234280  234282  234286  234288  234292  234294  234298  234304  234306  234312  234316  234318  234322  234328  234334  234336  234342  234346  234348  234354  234358  234364  234372  266669 

科目: 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{3}$x,O为坐标原点,点M($\sqrt{5}$,$\sqrt{3}$)在双曲线上.
(1)求双曲线C的方程.
(2)若直线l与双曲线交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C异于O的两点.
(1)求抛物线C的方程;
(2)若直线OA,OB的斜率之积为-$\frac{1}{3}$,求证:直线AB过x轴上一定点.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知圆 M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点.
(1)若Q(1,0),求切线QA,QB的方程;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

16.写出命题“若x2+x-2≤0,则|2x+1|<1”的逆命题、否命题、逆否命题,并分别判断它们的真假.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B.设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为2$\sqrt{2}$,则p的值为2.

查看答案和解析>>

科目: 来源: 题型:填空题

14.过点(3,1)作圆(x-2)2+(y-2)2=5的弦,其中最短弦的长为2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设命题p:若a>b,则$\frac{1}{a}$<$\frac{1}{b}$;命题q:$\frac{1}{ab}$<0?ab<0.给出下面四个复合命题:①p∨q;②p∧q;③(¬p)∧(¬q);④(¬p)∨(¬q).其中真命题的个数有2个.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C上异于顶点的任一点P作圆O:x2+y2=b2的两条切线,切点分别为A,B,若直线AB与x,y轴分别交于M,N两点,则$\frac{{b}^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值为(  )
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.设P,Q分别为圆x2+(y-6)2=2和椭圆$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{2}$=1上的点,则P,Q两点间的最大距离是(  )
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.2$\sqrt{15}$+$\sqrt{2}$D.6$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,F1,F2分别为C的左右焦点,A为双曲线上一点,若|F1A|=3|F2A|,则cos∠AF2F1=(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案