精英家教网 > 高中数学 > 题目详情
17.已知圆 M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点.
(1)若Q(1,0),求切线QA,QB的方程;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程.

分析 (1)设出切线方程,利用圆心到直线的距离列出方程求解即可.
(2)设AB与MQ交于点P,求.出|MP|,利用相似三角形,|MB|2=|MP||MQ|,设Q(x,0),通过x2+22=9,求解即可.

解答 解:(1)设过点Q的圆M的切线方程为x=my+1,则圆心M到切线的距离为1,
∴$\frac{|2m+1|}{\sqrt{{m}^{2}+1}}=1$,∴m=-$\frac{4}{3}$或m=0,
∴切线方程为3x+4y-3=0和x=1.
(2)设AB与MQ交于点P,则MP⊥AB,∵MB⊥BQ,∴|MP|=$\sqrt{1-({\frac{2\sqrt{2}}{3})}^{2}}=\frac{1}{3}$,
利用相似三角形,|MB|2=|MP||MQ|,∴|MQ|=3,设Q(x,0),x2+22=9,∴x=$±\sqrt{5}$,
直线方程为:2x+$\sqrt{5}y-2\sqrt{5}=0$或2x-$\sqrt{5}y+2\sqrt{5}$=0.

点评 本题考查直线与圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知关于x的二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,0,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域$\left\{\begin{array}{l}{x+y-8≤0}\\{x>0}\\{y>0}\end{array}\right.$内的一点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a=log0.60.8,b=ln0.8,c=20.8,则a、b、c由小到大的顺序是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,P是椭圆上任意一点,且|PF1|+|PF2|=2$\sqrt{2}$,它的焦距为2
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线x-y+t=0与椭圆C交于不同的两点A,B,且线段AB的中点不在圆x2+y2=$\frac{10}{9}$内,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C上异于顶点的任一点P作圆O:x2+y2=b2的两条切线,切点分别为A,B,若直线AB与x,y轴分别交于M,N两点,则$\frac{{b}^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值为(  )
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=a|x-b|(a>0,a≠1),则对任意的非零实数a,b,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是(  )
A.{1,3}B.{1,4}C.{1,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两圆x2+y2+4x-6y+12=0与x2+y2-2x-14y+15=0公共弦所在直线的方程是(  )
A.x-3y+1=0B.6x+2y-1=0C.6x+8y-3=0D.3x-y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2},-1<x<2}\\{2x,x≥2}\end{array}\right.$
(1)求f(f(-2));
(2)画出函数f(x)的图象,根据图象写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,求在一个工作日内的利润最大时,需要生产甲产品与乙产品多少件?
(在如图所示平面直角坐标系中画图)

查看答案和解析>>

同步练习册答案