相关习题
 0  245013  245021  245027  245031  245037  245039  245043  245049  245051  245057  245063  245067  245069  245073  245079  245081  245087  245091  245093  245097  245099  245103  245105  245107  245108  245109  245111  245112  245113  245115  245117  245121  245123  245127  245129  245133  245139  245141  245147  245151  245153  245157  245163  245169  245171  245177  245181  245183  245189  245193  245199  245207  266669 

科目: 来源: 题型:解答题

7.已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),短轴的两个端点分别为B1、B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的离心率为$\frac{1}{2}$,直线l与椭圆相交于A、B两点,弦AB的中点为(${\frac{1}{2}$,1),求直线l的方程;
(3)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P、Q两点,且$\overrightarrow{{F_1}P}$⊥$\overrightarrow{{F_1}Q}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知倾斜角为60°的直线通过抛物线x2=4y的焦点F,且与抛物线相交于AB两点,则弦AB的长为16.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知双曲线的焦点在x轴上,两个顶点A1,A2间的距离为2,焦点到渐近线的距离为$\sqrt{2}$.
(1)求双曲线的标准方程;
(2)设双曲线上任意一点的坐标为M(异于两个顶点),直线MA1和MA2的斜率分别是k1,k2.求k1k2的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点,上下顶点依次为F1,F2,B1,B2,若四边形F1B1F2B2的面积为8,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M,N在椭圆C上,若M,F2,N三点共线,且$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{1}{3}$$\overrightarrow{{F}_{1}M}$+λ$\overrightarrow{{F}_{1}N}$(λ∈R),求直线MN的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知A,B是抛物线y2=2px(p>0)上异于远点P的两点.F是抛物线的焦点,KOA、KOB分别表示直线OA,OB的斜率.且KOA•KOB=λ(λ为小于零的常数)
(1)证明直线AB恒过X轴上的一定点;
(2)设AB的中点为M,点M在抛物线的准线上的射影为点N,若∠AFB=120°,求$\frac{|AB|}{|MN|}$的最小值及取得最小值时λ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设F为抛物线y2=4x的焦点,A是抛物线上一点,B是圆C:(x+3)2+(y+3)2=4上任意一点,设点A到y轴的距离为m,则m+|AB|的最小值为2.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如果函数y=3sin(2x+φ)的图象关于直线x=$\frac{π}{6}$对称,则|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.在△ABC中,AB=1,∠ABC=60°,$\overrightarrow{AC}$•$\overrightarrow{AB}$=-1,若O是△ABC的重心,则$\overrightarrow{BO}$•$\overrightarrow{AC}$的值为(  )
A.1B.$\frac{5}{2}$C.$\frac{8}{3}$D.5

查看答案和解析>>

科目: 来源: 题型:填空题

10.在平面直角坐标系xOy中,已知圆O:x2+y2=16,点P(2,2),M、N是圆O上相异两点,且PM⊥PN,若$\overrightarrow{PQ}$=$\overrightarrow{PM}$+$\overrightarrow{PN}$,则|$\overrightarrow{PQ}$|的取值范围是[2$\sqrt{6}$-2$\sqrt{2}$,2$\sqrt{6}$+2$\sqrt{2}$].

查看答案和解析>>

同步练习册答案