相关习题
 0  249102  249110  249116  249120  249126  249128  249132  249138  249140  249146  249152  249156  249158  249162  249168  249170  249176  249180  249182  249186  249188  249192  249194  249196  249197  249198  249200  249201  249202  249204  249206  249210  249212  249216  249218  249222  249228  249230  249236  249240  249242  249246  249252  249258  249260  249266  249270  249272  249278  249282  249288  249296  266669 

科目: 来源: 题型:选择题

11.用反证法证明:若实数a,b,c,d满足a+b=c+d=1,ac+bd>1,那么a,b,c,d中至少有一个小于0,下列假设正确的是(  )
A.假设a,b,c,d都大于0B.假设a,b,c,d都是非负数
C.假设a,b,c,d中至多有一个小于0D.假设a,b,c,d中至多有两个大于0

查看答案和解析>>

科目: 来源: 题型:选择题

10.若sinθ+cosθ=$\frac{\sqrt{2}}{3}$,则cos(2θ+$\frac{π}{2}$)=(  )
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知:△ABC中,sinA•cos2$\frac{C}{2}$+sinC•cos2$\frac{A}{2}$=$\frac{3}{2}$sinB,求证:sinA+sinC=2sinB.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinωx•cosωx+{cos^2}ωx-\frac{1}{2}({ω>0})$的图象上两相邻对称轴间的距离为$\frac{π}{4}$.
(1)求f(x)的单调递减区间;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设-$\frac{π}{2}$≤x≤$\frac{π}{2}$,且方程cos2x-4acosx-a+2=0有两个不同的解,试求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{1+cos2x}{2sin(\frac{π}{2}-x)}$+sinx+a2sin(x+$\frac{π}{4}$).
(1)求函数y=f(x)的单调递增区间;
(2)若函数y=f(x)的最小值为-$\sqrt{2}$-4,试确定常数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.若集合A={x|$\sqrt{{x}^{2}-3}$=ax+1,x∈R}为空集,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.解方程组:$\left\{\begin{array}{l}{\sqrt{(a-1)^{2}+{b}^{2}}=r+\frac{1}{2}}\\{\sqrt{(a+\frac{1}{2})^{2}+{b}^{2}}=r+1}\\{\sqrt{{a}^{2}+{b}^{2}}+r=\frac{3}{2}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.求使得函数y=sin(3x-$\frac{π}{4}$)取得最小值的x的集合.

查看答案和解析>>

科目: 来源: 题型:填空题

2.($\sqrt{x}$+$\frac{1}{\root{3}{x}}$)100的展开式中,有理项共有17项.

查看答案和解析>>

同步练习册答案