相关习题
 0  249930  249938  249944  249948  249954  249956  249960  249966  249968  249974  249980  249984  249986  249990  249996  249998  250004  250008  250010  250014  250016  250020  250022  250024  250025  250026  250028  250029  250030  250032  250034  250038  250040  250044  250046  250050  250056  250058  250064  250068  250070  250074  250080  250086  250088  250094  250098  250100  250106  250110  250116  250124  266669 

科目: 来源: 题型:选择题

8.已知AC、BD为圆x2+y2=4的两条互相垂直的弦,AC与BD相交于点M$(1,\sqrt{2})$,则四边形ABCD面积的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:选择题

7.设f(x)=xsinx,x∈$[{-\frac{π}{2},\frac{π}{2}}]$,若f(x1)>f(x2),则下列不等式中必定成立的是(  )
A.x1-x2<0B.x1-x2>0C.x12-x22>0D.x12<x22

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知数列{an}满足a1=$\frac{7}{6}$,Sn是 {an}的前n项和,点(2Sn+an,Sn+1)在f(x)=$\frac{1}{2}$x+$\frac{1}{3}$的图象上.
(1)求数列{an}的通项公式;
(2)若cn=(an-$\frac{2}{3}$)n,Tn为cn的前n项和,n∈N*,求Tn.

查看答案和解析>>

科目: 来源: 题型:解答题

5.对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时{xn}是周期为1的周期数列,当yn=sin($\frac{π}{2}$n)时{yn}是周期为4的周期数列.
(Ⅰ)设数列{an}满足an+2=an+1-an(n∈N*),a1=a,a2=b(a,b不同时为0),求证:数列{an}是周期为6的周期数列,并求数列{an}的前2013项的和S2013
(Ⅱ)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)设数列{an}满足an+2=an+1-an+1(n∈N*),a1=2,a2=3,数列{an}的前n项和为Sn,试问是否存在p,q,使对任意的n∈N*都有p≤(-1)n$\frac{S_n}{n}$≤q成立,若存在,求出p,q的取值范围;不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若曲线y=sinx,x∈(-π,π)在点P处的切线平行于曲线y=$\sqrt{x}(\frac{x}{3}+1)$在点Q处的切线,则PQ的斜率为$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.设复数z=(1-i)n(其中i为虚数单位,n∈N*).若z∈R,则n的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:选择题

2.设f(x)为定义在R上的奇函数,当x≥0时,有f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),\;x∈[0,1)\\ 1-|x-3|,\;x∈[1,+∞).\end{array}$,则关于x的函数F(x)=f(x)-$\frac{1}{2}$的所有零点之和为(  )
A.$\sqrt{2}$-1B.$\frac{{\sqrt{2}}}{2}$-1C.1-$\frac{{\sqrt{2}}}{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数在R上是单调函数,f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,则实数a的取值范围是$\frac{1}{7}$≤a<$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知Sn是数列{an}的前n项和,且Sn=n2-4n+4.
(1)求数列{an}的通项公式;
(2)设各项均不为零的数列{cn}中,所有满足ck•ck+1<0的正整数k的个数称为这个数列{cn}的变号数,令cn=1-$\frac{4}{{a}_{n}}$(n为正整数),求数列{cn}的变号数;
(3)记数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,若T2n+1-Tn≤$\frac{m}{15}$对n∈N+恒成立,求正整数m的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知a,b是实数,则“a+b>5”是“$\left\{\begin{array}{l}{a>2}\\{b>3}\end{array}\right.$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案