相关习题
 0  250031  250039  250045  250049  250055  250057  250061  250067  250069  250075  250081  250085  250087  250091  250097  250099  250105  250109  250111  250115  250117  250121  250123  250125  250126  250127  250129  250130  250131  250133  250135  250139  250141  250145  250147  250151  250157  250159  250165  250169  250171  250175  250181  250187  250189  250195  250199  250201  250207  250211  250217  250225  266669 

科目: 来源: 题型:选择题

1.直线l过原点,倾斜角是直线$\sqrt{3}$x-3y+12=0的倾斜角的2倍,则直线l的方程是(  )
A.$\sqrt{3}$x-y=0B.$\sqrt{3}$x+y=0C.$\sqrt{3}$x-2y=0D.$\sqrt{3}$x+2y=0

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知关于x的二次方程x2+2mx+2m+1=0有两根,其中一根在区间(-2,0)内,另一根在区间(1,2)内,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a}^{x}-{a}^{-x}}{a-1}$(a>0,且a≠1)
(1)判断f(x)的奇偶性和单调性;
(2)已知p:不等式af(x)≤2b(a+1)对任意x∈[-1,1]恒成立;q:函数g(x)=lnx+(x-b)2(b∈R)在[$\frac{1}{2}$,2]上存在单调递增区间,若p或q为真,p且q为假,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{a(x-1)^{2}\\;x<1}\\{(a-3)x+4a\\;x≥1}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则a的取值范围是(  )
A.(0,3)B.(0,3]C.(0,$\frac{3}{5}$)D.(0,$\frac{3}{5}$]

查看答案和解析>>

科目: 来源: 题型:选择题

17.数列$\frac{1}{2}$,$\frac{2}{4}$,$\frac{3}{8}$,$\frac{4}{16}$,…的前10项的和为(  )
A.$\frac{507}{256}$B.$\frac{507}{128}$C.$\frac{509}{128}$D.$\frac{509}{256}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).
(1)集合A中是否存在这样的元素(a,b)使它的象仍然是自身?若有,求出这个元素,若没有,说明理由;
(2)f:B→A是映射吗?

查看答案和解析>>

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,已知点A(1,0),B(2,1),C(1,$\frac{3}{2}$),点P(x,y)在△ABC三边围成的区域(含边界)内,且$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{BC}$(m,n∈R).
(1)若m=-2,n=2,求|$\overrightarrow{OP}$|;
(2)用x,y表示2m-$\frac{n}{2}$,并求2m-$\frac{n}{2}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3}{4}$π,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影是-$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知函数f(x)=x2+(sinα-2cosα)x+1是偶函数,则sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.利用对数的换底公式化简下列各式:
(1)logac•logca;
(2)log23•log34•log45•log52;
(3)(log43+log83)(log32+log92).

查看答案和解析>>

同步练习册答案