相关习题
 0  250608  250616  250622  250626  250632  250634  250638  250644  250646  250652  250658  250662  250664  250668  250674  250676  250682  250686  250688  250692  250694  250698  250700  250702  250703  250704  250706  250707  250708  250710  250712  250716  250718  250722  250724  250728  250734  250736  250742  250746  250748  250752  250758  250764  250766  250772  250776  250778  250784  250788  250794  250802  266669 

科目: 来源: 题型:解答题

5.已知A、B、C三点不共线,对平面ABC外一点O,若$\overrightarrow{OM}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$-$\overrightarrow{OC}$,证明:点M不在平面ABC内.

查看答案和解析>>

科目: 来源: 题型:解答题

4.颈椎病是一种退行性病变,多发于中老年人,但现在年轻的患者越来越多,甚至是大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在某医院随机的对入院的50名大学生进行了问卷调查,得到了如下的列联表:
  患颈椎病 不患颈椎病 合计
 过度使用 20 5 25
 不过度使用 10 15 25
 合计 30 20 50
(I)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(Ⅱ)已知在患有颈锥病的10名不过度使用电子产品的大学生中,有3名大学生又患有胃病,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患胃病的学生人数为?,求?的分布列,数学期望以及方差.
(参考数据与公式:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.0100.005 0.001 
 k 2.072 2.706 3.841 5.024 6.635 7.87910.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目: 来源: 题型:解答题

3.用定义证明函数y=x+$\frac{1}{x}$在(1,+∞)上为增函数.

查看答案和解析>>

科目: 来源: 题型:解答题

2.设f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,若0<a<1,试求:
(1)f(a)+f(1-a)的值;
(2)f($\frac{1}{2007}$)+f($\frac{2}{2007}$)+…f($\frac{2006}{2007}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=x2-alnx-x.
(1)若a=6,求函数f(x)的最小值;
(2)是否存在实数a,使f(x)≥0恒成立?若存在,求出所有a的值;若不存在.请说明理由;
(3)若a>0,设A(x1,y1),B(x2,y2)是函数f(x)图象上的任意两点(x1<x2),记直线AB的斜率为k,f′(x)为f(x)的导函数.试比较f′($\frac{{x}_{1}+2{x}_{2}}{3}$)与k的大小,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)是定义在R上的偶函数,x≥0时,f(x)=-x2+4x.
(Ⅰ)求f(x)的解析式;
(Ⅱ)画出函数f(x)的图象;
(Ⅲ)指出函数的单调递增及单调递减区间;
(Ⅳ)求函数f(x)的最大及最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设a=1$\frac{1}{2}$,b=13$\frac{1}{2}$,求$\frac{({a}^{\frac{1}{2}}+{b}^{\frac{1}{2}})^{-1}-({a}^{\frac{1}{2}}-{b}^{\frac{1}{2}})^{-1}}{({a}^{\frac{1}{2}}+{b}^{\frac{1}{2}})^{-1}+({a}^{\frac{1}{2}}-{b}^{\frac{1}{2}})^{-1}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在80件产品中,有50件一等品,20件二等品,10件三等品,从中任取3件.求3件都是一等品的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某种型号电子元件的寿命X(以h计)具有概率密度,f(x)=$\left\{\begin{array}{l}{\frac{1500}{{x}^{2}},x>1500}\\{0,其他}\end{array}\right.$,现有一大批此种元件(设各元件损坏与否相互独立),任取5只,问其中至少有2只寿命大于3000h的概率是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

16.某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产的灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(I)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)

查看答案和解析>>

同步练习册答案