相关习题
 0  251579  251587  251593  251597  251603  251605  251609  251615  251617  251623  251629  251633  251635  251639  251645  251647  251653  251657  251659  251663  251665  251669  251671  251673  251674  251675  251677  251678  251679  251681  251683  251687  251689  251693  251695  251699  251705  251707  251713  251717  251719  251723  251729  251735  251737  251743  251747  251749  251755  251759  251765  251773  266669 

科目: 来源: 题型:填空题

6.甲、乙两名同学从三门选修课中各选修两门,则两人所选课程中恰有一门相同的概率为$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知$f(x)={x^{2005}}+a{x^3}-\frac{b}{x}-8$,f(-2)=10,则f(2)=-26.

查看答案和解析>>

科目: 来源: 题型:解答题

4.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数xi10152025303540
件数yi471215202327
其中i=1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=x|x-a|(a>0).
(1)不等式f(x)≤1在[0,n]上恒成立,当n取得最大值时,求a的值;
(2)在(1)的条件下.若对于任意的x∈R,不等式f(x+t)≥f(x)-t(t>0)恒成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知圆锥的侧面积为15πcm2,底面半径为3cm,则圆锥的高是(  )
A.3cmB.4cmC.5cmD.8cm

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知点P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ∈R),则直线AP必经过△ABC的(  )
A.重心B.内心C.垂心D.外心

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知圆C:x2+y2-4x+2y=0与圆C2:x2+y2-2y=0相交于A,B两点.
(1)求过A,B两点且圆心在直线2x+y=2上的圆C的方程;
(2)设P,Q是圆C上两点,且满足|OP|•|OQ|=1,求坐标原点到直线PQ的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

19.设点A(-1,0),B(1,0),动点P到A点的距离与到B点的距离之比为2,则点P的轨迹方程是(  )
A.${(x-\frac{5}{3})^2}+{y^2}=\frac{16}{9}$B.${(x+\frac{5}{3})^2}+{y^2}=\frac{16}{9}$C.${(x-\frac{5}{3})^2}+{y^2}=\frac{4}{3}$D.${(x+\frac{5}{3})^2}+{y^2}=\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是(  )
A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=0

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)对任意a,b∈R,都有f(a+b)=f(a)+f(b)-3,并且当x>0时,f(x)>3.
(1)求证:f(x)是R上的增函数.
(2)若f(4)=2,解不等式f(3m2-m-2)>$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案