相关习题
 0  256636  256644  256650  256654  256660  256662  256666  256672  256674  256680  256686  256690  256692  256696  256702  256704  256710  256714  256716  256720  256722  256726  256728  256730  256731  256732  256734  256735  256736  256738  256740  256744  256746  256750  256752  256756  256762  256764  256770  256774  256776  256780  256786  256792  256794  256800  256804  256806  256812  256816  256822  256830  266669 

科目: 来源: 题型:

【题目】(本小题满分13分)

如图,在正四面体中,分别是棱的中点.

1)求证:四边形是平行四边形;

2)求证:平面

3)求证:平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】【2014天津,文19】已知函数

(1) 的单调区间和极值;

(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数(其中)满足下列3个条件:

函数的图象过坐标原点

②函数的对称轴方程为

③方程有两个相等的实数根,

.

1求函数的解析式;

2)求使不等式恒成立的实数的取值范围;

3已知函数上的最小值为,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

在平面直角坐标系中,有三个点的坐标分别是.

1)证明:A,B,C三点不共线

(2)求过A,B的中点且与直线平行的直线方程;

(3)过C且与AB所在直线垂直的直线,求与两坐标轴围成的三角形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.

(1)求依据方案乙所需化验恰好为2次的概率.

(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8.

有时可用函数

描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

1) 证明:当时,掌握程度的增加量总是下降;

2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,

.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

查看答案和解析>>

科目: 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;

(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分14分)

设椭圆的离心率为,其左焦点与抛物线的焦点相同.

1)求此椭圆的方程;

2)若过此椭圆的右焦点的直线与曲线只有一个交点,则

求直线的方程;

椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了在十一黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不予优惠;(2)如果超过200元,但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其中500元按第(2)条给予优惠,超过500元的部分给予7折优惠。小张两次去购物,分别付款168元和423元,假设她一次性购买上述同样的商品,则应付款额为

查看答案和解析>>

科目: 来源: 题型:

【题目】【2014高考陕西版文第21题】设函数.

(1)为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案