【题目】(本小题满分13分)
如图,在正四面体中,分别是棱的中点.
(1)求证:四边形是平行四边形;
(2)求证:平面;
(3)求证:平面.
【答案】见解析.
【解析】
试题分析:第一问应用三角形的中位线的性质,可知四边形的一组对边平行且相等的,从而根据平行四边形的判定定理,得出结果,对于第二问,注意把握线面平行的判定定理的内容,找准平行线即可,三角形的中位线是现成的,对于第三问,掌握线面垂直的判定定理的内容,找准两条相交直线与之垂直即可,正三角形的中线和垂线是重合的,好好写即可.
试题解析:
证明:(1)∵分别是棱的中点,
∴,且, (2分)
∴且, (3分)
∴四边形是平行四边形. (4分)
(2)由(1)知,, (5分)
且平面,平面, (7分)
∴平面. (8分)
(3)∵是正四面体,
所以它的四个面是全等的等边三角形. (9分)
∵ H是BC的中点,
∴. (11分)
又SH平面SAH,AH平面SAH,且,(12分)
∴平面. (13分)
科目:高中数学 来源: 题型:
【题目】下面给出四种说法:
①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p
④回归直线一定过样本点的中心( ).
其中正确的说法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017届云南省云南师范大学附属中学高三高考适应性月考(五)文数】已知函数.
(1)若曲线在点处的切线斜率为1,求函数的单调区间;
(2)若时,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
有时可用函数
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1) 证明:当时,掌握程度的增加量总是下降;
(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知动点M到点的距离等于M到点的距离的倍.
(1)求动点M的轨迹C的方程;
(2)若直线与轨迹C没有交点,求的取值范围;
(3)已知圆与轨迹C相交于两点,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆(a>b>0)的离心率,过点和的直线与原点的距离为.
(1)求椭圆的方程.
(2)已知定点,若直线与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com