相关习题
 0  256736  256744  256750  256754  256760  256762  256766  256772  256774  256780  256786  256790  256792  256796  256802  256804  256810  256814  256816  256820  256822  256826  256828  256830  256831  256832  256834  256835  256836  256838  256840  256844  256846  256850  256852  256856  256862  256864  256870  256874  256876  256880  256886  256892  256894  256900  256904  256906  256912  256916  256922  256930  266669 

科目: 来源: 题型:

【题目】已知函数 在区间内单调递减,在区间内单调递增,且上有三个零点,1是其中一个零点.

(1)求的取值范围;

(2)若直线在曲线的上方部分所对应的的集合为,试求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于二项式(x-1)2005有下列命题:

①该二项展开式中非常数项的系数和是1;

②该二项展开式中第六项为x1999

③该二项展开式中系数最大的项是第1002项;

④当x=2006时,(x-1)2005除以2006的余数是2005。

其中正确命题的序号是__________。(注:把你认为正确的命题序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形, .

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击.①求前3次射击中甲恰好击中2次的概率____________;②求第4次由甲射击的概率________

查看答案和解析>>

科目: 来源: 题型:

【题目】某次考试中,语文成绩服从正态分布,数学成绩的频率分布直方图如下:

(Ⅰ)如果成绩大于135的为特别优秀,随机抽取的500名学生在本次考试中语文、数学成绩特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)

(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中至少有一科成绩特别优秀的同学中随机抽取3人,设3人中两科都特别优秀的有人,求的分布列和数学期望;

(Ⅲ)根据以上数据,是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.

(附公及表)

①若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆和直线,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 ,,其中(e是自然常数),

(1)当时, 求的单调区间、极值;

(2)是否存在,使的最小值是3,若存在求出的值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线ly=3x+3,求:

(1)点P(4,5)关于直线l的对称点坐标;

(2)直线l1yx-2关于直线l的对称直线的方程;

(3)直线l关于点A(3,2)的对称直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.

温度

20

22

24

26

28

30

32

产卵数/个

6

10

21

24

64

113

322

400

484

576

676

784

900

1024

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).

(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据:

(3)若模型①、②的相关指数计算得分分别为 ,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

同步练习册答案