科目: 来源: 题型:
【题目】给出下列五个命题:①“若
,则
或
”是假命题;②从正方体的面对角线中任取两条作为一对,其中所成角为
的有48对;③“
”是方程
表示焦点在
轴上的双曲线的充分不必要条件;④点
是曲线
(
,
)上的动点,且满足
,则
的取值范围是
;⑤若随机变量
服从正态分布
,且
,则
.其中正确命题的序号是__________(请把正确命题的序号填在横线上).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
且
,直线:
,圆
:
.
(Ⅰ)若
,请判断直线与圆
的位置关系;
(Ⅱ)求直线倾斜角
的取值范围;
(Ⅲ)直线能否将圆
分割成弧长的比值为
的两段圆弧?为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD中,
=(3,2),
=(x,y),
=(﹣2,﹣3)
(1)若
∥
,试求x与y满足的关系式;
(2)满足(1)同时又有
⊥
,求x,y的值及四边形ABCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:( )
做不到“光盘” | 能做到“光盘” | |
男 | 45 | 10 |
女 | 30 | 15 |
附:
P(K2 | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
![]()
参照附表,得到的正确结论是
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,
、
分别是它的左、右焦点,且存在直线
,使
、
关于
的对称点恰好是圆
:
(
,
)的一条直径的两个端点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与抛物线
(
)相交于
、
两点,射线
、
与椭圆
分别相交于点
、
.试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量
=(cosωx,sinωx),
=(cosωx,
cosωx),其中ω>0,设函数f(x)=
.
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为
,求ω的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一次抽样调查中测得样本的6组数据,得到一个变量
关于
的回归方程模型,其对应的数值如下表:
| 2 | 3 | 4 | 5 | 6 | 7 |
|
|
|
|
|
|
|
(1)请用相关系数
加以说明
与
之间存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)根据(1)的判断结果,建立
关于
的回归方程并预测当
时,对应的
值为多少(
精确到
).
附参考公式:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
,相关系数
公式为:
.
参考数据:
,
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}的公差d>0,设{an}的前n项和为Sn , a1=1,S2S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com