精英家教网 > 高中数学 > 题目详情

【题目】已知,直线: ,圆:

(Ⅰ)若,请判断直线与圆的位置关系;

求直线倾斜角的取值范围;

(Ⅲ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

【答案】(1) 直线与圆相交;(2) ;(3)直线不能将圆分割成弧长的比值为的两段弧.

【解析】试题分析:(Ⅰ)若求出圆心C(4,﹣2)到直线l的距离,与半径的关系,即可判断直线l与圆C的位置关系;

直线,可得: ,利用均值不等式,即可得到直线倾斜角的取值范围

(Ⅲ)判断 .若直线l能将圆C分割成弧长的比值为的两段圆弧,则圆心C到直线l的距离,即可得出结论.

试题解析:

(Ⅰ)圆的圆心为,半径

直线: ,即

则圆心到直线的距离

所以直线与圆相交.

直线的方程可化为

直线的斜率,所以,当且仅当时等号成立.

所以斜率的取值范围是

所以的范围为

(Ⅲ)能.由(Ⅰ)知直线恒过点

设直线的方程为,其中

圆心到直线的距离

,又

若直线能将圆分割成弧长的比值为的两段圆弧,则圆心到直线的距离

因为,所以直线不能将圆分割成弧长的比值为的两段弧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1979年,李政道博士给中国科技大学少年班出过一道智趣题:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分,夜里1只猴子偷偷爬起来,先吃掉一个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,将剩余的桃子吃掉一个后,也将桃子分成5等份;藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理,问:最初至少有多少个桃子?最后至少剩下多少个桃子?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,曲线过点,且在点处的切线方程为.

1)求 的值;

2)证明:当时,

3)若当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,设函数f(x)=
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为 ,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx=axlnx,其中a为常数,设e为自然对数的底数.

1)当a=1时,求的最大值;

2)若fx)在区间(0e]上的最大值为-3,求a的值;

3)当a=1时,试推断方程是否有实数解 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若函数处的切线与直线垂直,求的值;

(Ⅱ)讨论函数极值点的个数,并说明理由;

(Ⅲ)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是的中点.

1)证明:平面平面

2上是否存在点,使平面?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式x2≤5x﹣4的解集为A.
(1)求集合A;
(2)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若MA,求实数a的取值范围.

查看答案和解析>>

同步练习册答案