相关习题
 0  256956  256964  256970  256974  256980  256982  256986  256992  256994  257000  257006  257010  257012  257016  257022  257024  257030  257034  257036  257040  257042  257046  257048  257050  257051  257052  257054  257055  257056  257058  257060  257064  257066  257070  257072  257076  257082  257084  257090  257094  257096  257100  257106  257112  257114  257120  257124  257126  257132  257136  257142  257150  266669 

科目: 来源: 题型:

【题目】已知 ,当k为何值时,
(1) 垂直?
(2) 平行?平行时它们是同向还是反向?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)的最小正周期和单调递增区间;

(Ⅱ)已知abc是△ABC三边长,且fC)=2,△ABC的面积S=c=7.求角Cab的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目: 来源: 题型:

【题目】命题p:关于x的不等式的解集为;命题q:函数为增函数.命题ra满足

(1)若pq是真命题且pq是假题.求实数a的取值范围.

(2)试判断命题¬p是命题r成立的一个什么条件.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于下列命题
①函数y=tanx在第一象限是增函数;
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一个对称中心是( ,0);
④函数y=sin(x+ )在闭区间[﹣ ]上是增函数;
写出所有正确的命题的题号:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体为棱的中点.

Ⅰ)求证:平面

Ⅱ)求证:平面平面

Ⅲ)若正方体棱长为,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方体的棱长为,动点在棱上,动点分别在棱上,若大于零),则四面体的体积( ).

A. 都有关 B. 有关,与无关

C. 有关,与无关 D. 有关,与无关

查看答案和解析>>

科目: 来源: 题型:

【题目】若存在实数,使得函数对定义域内的任意均满足,且存在使得,存在使得,则称直线为函数分界线.在下列说法中正确的是__________(写出所有正确命题的编号).

①任意两个一次函数最多存在一条分界线”;

分界线存在的两个函数的图象最多只有两个交点;

分界线

分界线

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱柱中,底面,底面为菱形,交点,已知

(I)求证:平面

(II)在线段上是否存在一点,使得平面,如果存在,求的值,如果不存在,请说明理由.

(III)设点内(含边界),且求所有满足条件的点构成的图形,并求的最小值.

查看答案和解析>>

同步练习册答案