相关习题
 0  257160  257168  257174  257178  257184  257186  257190  257196  257198  257204  257210  257214  257216  257220  257226  257228  257234  257238  257240  257244  257246  257250  257252  257254  257255  257256  257258  257259  257260  257262  257264  257268  257270  257274  257276  257280  257286  257288  257294  257298  257300  257304  257310  257316  257318  257324  257328  257330  257336  257340  257346  257354  266669 

科目: 来源: 题型:

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线与圆 且与椭圆相交于两点.

(1)若直线恰好经过椭圆的左顶点,求弦长

(2)设直线的斜率分别为,判断是否为定值,并说明理由

(3)求,面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}的前n项和为Sn满足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知在平面直角坐标系,的参数方程为 (为参数)以轴为极轴 为极点建立极坐标系,在该极坐标系下,圆是以点为圆心,且过点的圆心.

(1)求圆及圆在平而直角坐标系下的直角坐标方程;

(2)求圆上任一点与圆上任一点之间距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若 ,求证:△ABC为等腰三角形;
(2)若 ,边长c=2,角C= ,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点, ).

(1)设中点为 ,求证: 平面

(2)若到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中__________为真命题(把所有真命题的序号都填上).

①“”成立的必要条件是“”;

②“若成等差数列,则”的否命题;

③“已知数列的前项和为,若数列是等比数列,则成等比数列.”的逆否命题;

④“已知上的单调函数,若,则”的逆命题.

查看答案和解析>>

同步练习册答案