相关习题
 0  257198  257206  257212  257216  257222  257224  257228  257234  257236  257242  257248  257252  257254  257258  257264  257266  257272  257276  257278  257282  257284  257288  257290  257292  257293  257294  257296  257297  257298  257300  257302  257306  257308  257312  257314  257318  257324  257326  257332  257336  257338  257342  257348  257354  257356  257362  257366  257368  257374  257378  257384  257392  266669 

科目: 来源: 题型:

【题目】设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( ) ① ;②
;④
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= (a>0).
(1)证明函数f(x)在(0,2]上是减函数,(2,+∞)上是增函数;
(2)若方程f(x)=0有且只有一个实数根,判断函数g(x)=f(x)﹣4的奇偶性;
(3)在(2)的条件下探求方程f(x)=m(m≥8)的根的个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入﹣管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 +y2=1的左右焦点分别为F1 , F2 , 直线l过椭圆的右焦点F2与椭圆交于A,B 两点, (Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为 的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知圆G:x2﹣x+y2=0,经过抛物线y2=2px的焦点,过点(m,0)(m<0)倾斜角为 的直线l交抛物线于C,D两点. (Ⅰ)求抛物线的方程;
(Ⅱ)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】过点作一直线与抛物线交于两点,点是抛物线上到直线的距离最小的点,直线与直线交于点.

()求点的坐标;

()求证:直线平行于抛物线的对称轴.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=xln(x+ (a>0)为偶函数.
(1)求a的值;
(2)求g(x)=ax2+2x+1在区间[﹣6,3]上的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分别是棱AD,PC的中点
(1)求证:EF⊥平面PBC
(2)若直线PC与平面ABCD所成角为 ,点P在AB上的射影O在靠近点B的一侧,求二面角P﹣EF﹣A的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ),曲线处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)证明:

(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数, ),若的极值点,且恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A={y|2<y<3},B={x|( <22x+1}.
(1)求A∩B;
(2)求C={x|x∈B且xA}.

查看答案和解析>>

同步练习册答案